
Municipal Scrapers Contributor’s Guide
Documentation

Open Civic Data

Jan 17, 2023

CONTENTS

1 Writing Scrapers 3
1.1 Getting Started Writing Scrapers . 3
1.2 Creating a New Scraper . 5
1.3 Writing a Person Scraper . 6
1.4 Writing an Events Scraper . 10
1.5 Writing a Bill Scraper . 13
1.6 Running the Scraper . 19
1.7 Submitting a Pull Request . 22
1.8 Common tips for writing scrapers . 25

2 Open Civic Data Formats 29
2.1 Adopting the OCD Specification . 29
2.2 Data Types . 34
2.3 Jurisdiction Objects . 35
2.4 Division Objects . 36
2.5 Person Objects . 37
2.6 Organization Objects . 39
2.7 Bill Objects . 42
2.8 Vote Objects . 47
2.9 Event Objects . 49
2.10 OCD Identifiers . 54

3 Style Guidelines 57
3.1 General . 57
3.2 Open Civic Data Workflow . 57
3.3 Python Code Guidelines . 58

4 Open Civic Data Enhancement Proposals 59
4.1 OCDEP 1: Purpose and Guidelines . 59
4.2 OCDEP 2: Division Identifiers . 61
4.3 OCDEP 3: Jurisdictions . 65
4.4 OCDEP 4: Events . 67
4.5 OCDEP 5: People, Organizations, Posts, and Memberships . 78
4.6 OCDEP 6: Bills . 81
4.7 OCDEP 7: Votes . 85
4.8 OCDEP 8: Division Identifier Governance . 88
4.9 OCDEP 20: Elections . 92
4.10 OCDEP 101: Standardize Usage of Dates & Times . 106

i

ii

Municipal Scrapers Contributor’s Guide Documentation

The opencivicdata organization on Github is the home to a collaborative effort to define common schemas and provide
tools for gathering information on government organizations, people, legislation, and events.

If you’re looking to contribute to the project or learn how to use the data, you’re in the right place.

CONTENTS 1

https://github.com/opencivicdata/

Municipal Scrapers Contributor’s Guide Documentation

2 CONTENTS

CHAPTER

ONE

WRITING SCRAPERS

1.1 Getting Started Writing Scrapers

While we strive to make writing scrapers as simple as possible, there are a few prerequisites:

• Python (or Ruby using pupa-ruby)

• Understanding GitHub

• Scraping Basics

If you’re already well-versed in Python, GitHub, and basics of web scraping you can skip to Getting Started.

Note: These instructions are intended for Linux or OS X. If you’re using Windows you’ll probably benefit from using
something like MinGW or a VM running Linux. If you’re using OS X you may also find the excellent OS X-specific
docs published by Open North useful.

1.1.1 Python

If you aren’t already familiar with Python you might want to start with Python on Codecademy.

Note: Make sure you are using Python 3.3 or newer.

Having a local development environment is recommended, virtualenv & virtualenvwrapper are optional tools that will
help you keep your Python environment clean if you work on multiple projects.

1.1.2 Understanding GitHub

Contributing code requires a free GitHub account, if you haven’t use Git before there’s a Git tutorial to get you started.

3

https://github.com/opennorth/pupa-ruby
http://www.mingw.org/
https://github.com/opennorth/opennorth.ca/wiki/Python-Quick-Start%3A-OS-X
https://github.com/opennorth/opennorth.ca/wiki/Python-Quick-Start%3A-OS-X
https://github.com/opennorth/
http://www.codecademy.com/tracks/python
httpe://pypi.python.org/pypi/virtualenv
http://virtualenvwrapper.readthedocs.org/en/latest/
http://github.com
https://help.github.com/articles/set-up-git#platform-all

Municipal Scrapers Contributor’s Guide Documentation

1.1.3 Scraping Basics

It is useful to understand the basic concept of web scraping before beginning, which is somewhat beyond the scope of
this documentation. We recommend this source.

We recommend the lxml.html library. If you work with jQuery but haven’t used XPath you may also find lxml.cssselect
useful, though it is a bit more limited.

In our experience spending a few minutes brushing up on the basics of XPath is well worth it as it makes scrapers easier
to write and more maintainable in the long run.

1.1.4 Getting Started

The first thing to do is to choose a repository to work with, or create a new one.

Most likely you’ll be creating a fork of one of the existing scraper repositories:

• scrapers-us-municipal - US municipal governments

• scrapers-us-state - US state-level governments

• scrapers-us-federal - US federal government

• scrapers-ca - Canadian legislative

• influence-usa/scrapers-us-state - US state influence data

If your scraper falls into one of those categories you should fork it and create a new directory within that repository.
We’d also suggest you work on a branch to make merging changes as easy as possible.

If you’re hoping to create a scraper for something not yet covered please email the Open Civic Data list and we can
work with you to decide the best way to proceed.

Once you’ve chosen a repository you’ll need to install the pupa library (the first syllable of pupa is pronounced ‘pew’
as in ‘pew pew pew pew pew’). Also install any other dependencies (like lxml) that you’ll be using to do your scraping.
If you’re using an existing repo, you should be able to get all necessary libraries by installing the requirements listed in
that repository’s requirements.txt file.

An example of how you might configure your setup:

using a virtualenv highly recommended
$ mkvirtualenv --python `which python3` opencivicdata
Install pupa
$ pip install --upgrade pupa
Clone the repo that you forked on GitHub
$ git clone git@github.com:<yourusername>/scrapers-us-state.git
Switch to a branch to make pulling your work later as easy as possible
$ cd scrapers-us-state
$ git checkout --branch <new-branch-name>
...do work...
$ git push --set-upstream origin <new-branch-name>

If you’re all set up, you can move on to Creating a New Scraper.

4 Chapter 1. Writing Scrapers

http://docs.python-guide.org/en/latest/scenarios/scrape/
http://lxml.de/lxmlhtml.html
http://lxml.de/cssselect.html
https://www.w3schools.com/xml/xpath_syntax.asp
https://github.com/opencivicdata/scrapers-us-municipal
https://github.com/opencivicdata/scrapers-us-state
https://github.com/opencivicdata/scrapers-us-federal
https://github.com/opencivicdata/scrapers-ca
https://github.com/influence-usa/scrapers-us-state
https://groups.google.com/forum/#!forum/open-civic-data

Municipal Scrapers Contributor’s Guide Documentation

1.2 Creating a New Scraper

If you’ve followed the directions at Writing Scrapers then you’re ready to start a new scraper.

We’ll be creating a new people scraper for Seattle, but simply subsititute your own city name for Seattle as you follow
these next few steps.

To copy a skeleton project into a new scraper directory, use pupa’s init command. It will ask you a few questions.

$ pupa init seattle
jurisdiction name: Seattle City Council
division id (look this up in the opencivicdata/ocd-division-ids repository):
official URL: http://seattle.gov/council/
create people scraper? [Y/n]: y
create events scraper? [y/N]: n
create bills scraper? [y/N]: n
create votes scraper? [y/N]: n

(For beginners we recommend starting with just a single scraper, it is easy to create more scrapers later.)

In order to prevent duplication and redundancy, standardized division-id’s are available in the repository ocd-division-
ids. In the identifiers subdirectory, you’ll find full csvs for each of the jurisdicitions we’ve entered so far - open the
appropriate one and find the relevant division. If you are interested in adding a new geography or a new division within
an existing geography, please contact open-civic-data@googlegroups.com.

This process should have created a new directory (named for whatever argument you gave to pupa init, seattle in this
case) which contains an __init__.py and a file for each scraper you asked pupa to create.

Your __init__.py should look something like this:

from pupa.scrape import Jurisdiction
from .people import SeattlePersonScraper

class Seattle(Jurisdiction):
division_id = "ocd-division/country:us/state:wa/place:seattle"
name = "Seattle City Council"
url = "http://seattle.gov/council/"
scrapers = {

"people": SeattlePersonScraper,
}

def get_organizations(self):
org = Organization(name="org_name",

classification="legislature")

org.add_post(
label="position_description",
role="position_type")

yield org

Every scraper is required to provide a Jurisdiction subclass. pupa init created a working subclass but you may want
to specify additional details. For a full description of all the options visit Jurisdiction Objects.

You’ll also notice that your class defines a list of scrapers. These are used by pupa update when deciding which
scrapers to run. By default pupa update will run all of your scrapers, but you can look at ../pupa/update for further

1.2. Creating a New Scraper 5

https://github.com/opencivicdata/ocd-division-ids
https://github.com/opencivicdata/ocd-division-ids
mailto:open-civic-data@googlegroups.com

Municipal Scrapers Contributor’s Guide Documentation

details.

In addition, every scraper needs to define at least one organization. In this case, the organiztion will likely be the
Seattle City Council. Replace the text org_name with the name of the organization you’re scraping. The organization
also needs to have a classification. Select the most appropriate from this list, and replace “legislature” with it:

• legislature

• executive

• upper

• lower

• party

• committee

• commission

Finally, the file created by pupa init adds posts to the organization. Scrapers can run without posts, so if you won’t be
looking at people, feel free to delete this line. But if you will be scraping people, you should add the posts you’ll be
scraping. For example, for the Seattle City Council, you’ll want to add a post for each of the 9 seats (called Positions
in Seattle). For Position 1, we’d set the label to “Council Position 1” and the role to “Councilmember”.

Once the orginazitaion is created and the positions are added, yield the organization. (If you’re not familiar with yield
and generators in python, we recommend this talk from PyCon 2013.)

You can create as many organizations as needed. For Seattle, you might also want an executive so you can scrape the
mayor’s office, and add the mayor as a position. Yield each organization after adding it. Don’t worry about adding
every committee - organizations such as committees can be added later when you find them with a scraper.

You’re now set up to scrape data! Next up we’ll discuss how to scrape events, bills and people.

1.3 Writing a Person Scraper

This document is meant to provide a tutorial-like overview of the steps toward contributing a municipal Person scraper
to the Open Civic Data project.

This guide assumes you have a working pupa setup. If you don’t please refer to the introduction on Writing Scrapers.

1.3.1 Special notes about People scrapers

The name is a bit misleading - so-called People scrapers actually scrape Person, Organization and Membership
objects.

The relationship between these three types is so close that they all should be scraped at the same time.

6 Chapter 1. Writing Scrapers

https://www.youtube.com/watch?v=EnSu9hHGq5o#t=13m00s

Municipal Scrapers Contributor’s Guide Documentation

1.3.2 Target Data

People scrapers pull in all sorts of information about Organization Membership and Person objects.

The target data commonly includes:

• People, and their posts (what bodies they represent)

– Alternate names

– Current photo

– links (homepage, YouTube account, Twitter account)

– Contact information (email, physical address, phone number)

– Any other identifiers that might be commonly used

– Committee memberships

• Orgs (committees, etc)

– Other names

– Commonly used IDs

– Contact information for the whole body

– Posts (sometimes called seats) on the org

– People in each org, and in which seat they sit.

1.3.3 Creating a New Person scraper

Our person scraper can be located anywhere, and simply needs to be importable by the __init__.py so that we can
reference it in the get_scraper method. Your scraper can even by located in the __init__.py file itself if you want to
keep things extra simple, but scraper code can eventually get pretty lengthy, so its more scalable to break each scraper
out into it’s own file. The default is to put the code in a file called people.py. Open up that file to see the scraper stub
generated by the pupa init program. It should look like this:

from pupa.scrape import Scraper, Person

class SeattlePersonScraper(Scraper):

def scrape(self):
needs to be implemented
pass

This is the default scraper template, which isn’t very useful yet, but it helps to clarify what the intent of the scraper is.
Let’s take a closer look.

In order to scrape people and committees, we’ll use the scrape method that’s been defined in the sample scraper, yielding
each Person object. You may also yield an iterable of Person objects, which helps if you are scraping both people and
committees for the Jurisdiction, but want to keep the scraper logic in their own routines.

As you might have guessed by now, Person scrapers scrape many People, as well as any Membership objects that you
might find along the way.

Let’s take a look at sample working Pupa scraper:

1.3. Writing a Person Scraper 7

Municipal Scrapers Contributor’s Guide Documentation

from pupa.scrape import Scraper, Person
class SeattlePersonScraper(Scraper):

def scrape(self):
john = Person(name="John Smith",
district="Position 1",
role="Councilmember",
primary_org="legislature")
john.add_source(url="http://example.com")
yield john

A person requires a name and a membership. The district, role and primary_org fields allow us to find the post to which
John Smith is assigned. Recall that we added this post in __init__. You can go back and add more posts in __init__
if needed. In addition, each entity that’s scraped needs a source, which is added using add_source.

1.3.4 Committees and Memberships

As noted, the People scraper can also handle committees. We can use the following code to add committees:

from pupa.scrape import Scraper, Person, Organization
class SeattlePersonScraper(Scraper):

def scrape(self):
comm = Organization(name="Transportation Committee",

classification="committee",
chamber="legislature")

comm.add_source(url="http://example.com/committtees/transit")
yield comm

And we might want to add relationships between people and committees. The Person object initializer automatically
creates a relationship between a person and his/her primary organization, but if we want to make John Smith a member
of the Transportation Committee, we can use the Organization’s add_member method. The full script is as follows:

from pupa.scrape import Scraper, Person, Organization

class SeattlePersonScraper(Scraper):

def scrape(self):
doc = self.get("http://www.sunlightfoundation.com")
john = Person(name="John Smith",

district="Position 1",
role="Councilmember",
primary_org="legislature")

john.add_source(url="http://example.com")
yield john

comm = Organization(name="Transportation Committee",
classification="committee",
chamber="legislature")

comm.add_source(url="http://example.com/committtees/transit")
comm.add_member(john,role="chair")
yield comm

8 Chapter 1. Writing Scrapers

Municipal Scrapers Contributor’s Guide Documentation

1.3.5 Scraper Example

Of course, in real scrapers, you’ll need to write some code to take care of getting the list of people that are in that
jurisdiction, or have memberships in the Legislature. Hardcoding names, such as in the examples above doesn’t do
much for us, since we won’t be able to capture the current state of the world.

As a slightly more fun example, here’s a scraper that will scrape the Sunlight website for people’s information. This is
deliberately a mildly complex example (as well as being purely for fun!), to get a feel for what a working Person scraper
may look like. Note that we’re assuming that Sunlight is a committee of the United States. Here’s the __init__.py
contents:

from pupa.scrape import Jurisdiction, Organization
from .people import UsaPersonScraper

class Usa(Jurisdiction):
division_id = "ocd-division/country:us"
classification = "committee"
name = "United States"
url = "www.sunlightfoundation.com"
scrapers = {

"people": UsaPersonScraper,
}

def get_organizations(self):
org = Organization(name="Sunlight Foundation", classification="committee")

org.add_post(label="president", role="president")
org.add_post(label="co-founder", role="co-founder")
org.add_post(label="staff", role="staff")
org.add_post(label="fellow", role="fellow")
org.add_post(label="consultant", role="consultant")
org.add_post(label="intern", role="intern")

org.add_source("www.sunlightfoundation.com")

yield org

And here’s our people scraper:

from pupa.scrape import Scraper, Person
import lxml.html

class UsaPersonScraper(Scraper):

def scrape(self):
url = "http://sunlightfoundation.com/team/"
entry = self.get(url).text
page = lxml.html.fromstring(entry)
page.make_links_absolute(url)

for position in page.xpath("//ul[contains(@class,'sunlightStaff')]/li"):
position_name = position.xpath('.//h3')[0].text
position_name = position_name.replace("Sunlight","").strip()
position_name = position_name.rstrip("s")

(continues on next page)

1.3. Writing a Person Scraper 9

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

for person in position.xpath(".//li"):
name = person.xpath(".//span")[0].text.strip()
homepage = person.xpath("..//a/@href")[0]
member = Person(name=name,

role=position_name,
primary_org="committee")

member.add_link(homepage)
member.add_source(url)
yield member

1.3.6 Special notes regarding Posts, Memberships and Districts

The keen observer will note that we’re using role, district and primary_org to note the person’s primary position.

Looking at the Popolo spec, you might be confused on why this isn’t an opaque ID, or some sort of slug.

We use full strings to help avoid having to search through all available organizations at scrape-time. The resolution is
done at import-time.

1.4 Writing an Events Scraper

Events listings are one of the more compelling datasets that we are able to collect, since it allows for near real-time
updating of upcoming events. Events include hearings, meetings, or bascially anything with a date and time listed by
the organization you’re scraping.

1.4.1 Target Data

Event scrapers pull down information regarding upcoming (or past) Events and associated metadata, such as who was
there, what was talked about, and any supporting material.

Some of the commonly scraped data includes:

• Name of the event

• When the event starts and ends

• Items on the Agenda

– Related entities (people, orgs, bills)

– Subject of the agenda item

– Related media

• Where the event is to take place

– Lat / lon (if it exists)

– Description of location (such address or building)

– Venue link

• Associated documents

• Associated people, orgs, participants

10 Chapter 1. Writing Scrapers

http://popoloproject.com/

Municipal Scrapers Contributor’s Guide Documentation

• Any video or audio of the event

1.4.2 Creating a new Events scraper

Let’s take a look at a sample Pupa event scraper:

from pupa.scrape import Scraper
from pupa.scrape import Event
import datetime as dt
import pytz

class SeattleEventScraper(Scraper):
def scrape(self):

when = dt.datetime(1776,7,4,9,15)
tz = pytz.timezone("US/Pacific") #set the timezone for this location
when = tz.localize(when)
e = Event(name="Hearing", # Event Name

start_time=when, # When the event will take place
timezone=tz.zone, #the local timezone for the event
location_name='Town Hall') # Where the event will be

e.add_source("http://example.com")
yield e

The events scraper looks a lot like a person scraper - the same stuff is going on here - the magic scrape method,
returns an iterable of objects. Unlike people, where we often found committees or other organizations, it’s not common
to come across other objects while scraping events, so this scraper will usually just return Event objects.

The scraper above contains the minimum elements required to create an event. But there’s much more we might want
to add. The following scraper adds particpants and documents that are relevant to the hearing:

from pupa.scrape import Scraper
from pupa.scrape import Event
import datetime as dt
import pytz

class SeattleEventScraper(Scraper):
def scrape(self):

when = dt.datetime(1776,7,4,9,15)
tz = pytz.timezone("US/Pacific") #set the timezone for this location
when = tz.localize(when)
e = Event(name="Hearing", # Event Name

start_time=when, # When the event will take place
timezone=tz.zone, #the local timezone for the event
location_name='unknown') # Where the event will be

e.add_source("http://example.com")

#add a committee
e.add_participant(name="Transportation Committee",

type="committee")

#add a person
e.add_person(name="Joe Smith", note="Hearing Chair")

(continues on next page)

1.4. Writing an Events Scraper 11

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

#add an mpeg video
e.add_media_link(note="Video of meeting",

url="http://example.com/hearing/video.mpg",
media_type="video/mpeg")

#add a pdf of meeting minutes
e.add_media_link(note="Meeting minutes",

url="http://example.com/hearing/minutes.pdf",
media_type="application/pdf")

yield e

The event is now much more fleshed out. But we’re still missing the meat of an event: the agenda! Next we’ll add
agenda items:

from pupa.scrape import Scraper
from pupa.scrape import Event
import datetime as dt
import pytz

class SeattleEventScraper(Scraper):
def scrape(self):

when = dt.datetime(1776,7,4,9,15)
tz = pytz.timezone("US/Pacific") #set the timezone for this location
when = tz.localize(when)
e = Event(name="Hearing", # Event Name

start_time=when, # When the event will take place
timezone=tz.zone, #the local timezone for the event
location_name='unknown') # Where the event will be

e.add_source("http://example.com")

#add a committee
e.add_participant(name="Transportation Committee",

type="committee")

#add a person
e.add_person(name="Joe Smith", note="Hearing Chair")

#add an mpeg video
e.add_media_link(note="Video of meeting",

url="http://example.com/hearing/video.mpg",
media_type="video/mpeg")

#add a pdf of meeting minutes
e.add_media_link(note="Meeting minutes",

url="http://example.com/hearing/minutes.pdf",
media_type="application/pdf")

#add an agenda item to this event
a = e.add_agenda_item(description="Testimony from concerned citizens")

(continues on next page)

12 Chapter 1. Writing Scrapers

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

#the testimony is about transportation and the environment
a.add_subject("Transportation")
a.add_subject("Environment")

#and includes these two committees
a.add_committee("Transportation")
a.add_committee("Environment and Natural Resources")

#these people will be present
a.add_person("Jane Brown")
a.add_person("Alicia Jones")
a.add_person("Fred Green")

#they'll be discussing this bill
a.add_bill("HB101")

#here's a document that is included
a.add_media_link(note="Written version of testimony",

url="http://example.com/hearing/testimony.pdf",
media_type="application/pdf")

yield e

This example shows how to use the events model exhaustively. However, we haven’t done any actual web-scraping.
All of the details we added are hard-coded. It is quite difficult to show an example of a functioning web-scraper for an
events page, as we have found that legislative events pages or calendars tend to change formats somewhat frequently.
For an example of a scraper that hits an actual webpage to find information, see Writing a Person Scraper.

1.5 Writing a Bill Scraper

Bill scrapers are scrapers that pull down all legislatition on a jurisdiction’s legislative website (including, but not limited
to things like House and Senate Resolutions, Bills or city ordinances).

Scrapers should scrape all bills from a session every single night.

1.5.1 Target Data

Bill scrapers are used to pull in information regarding Legislation, and basic associated metadata.

Bill scrapers should collect all the information it’s able to. The most common bits of data are:

• Basic information (name, session, chamber, summary)

• Sponsorship information (primary, secondary, etc)

• Actions regarding the legislation (introduction date, committee referral, chamber crossover, etc)

• Alternate names of the Legislation

• Related documents (fiscal reports, supporting data)

• Bill versions (Introduced Version, as amended)

• Related bills (companion bills, reintroductions)

1.5. Writing a Bill Scraper 13

Municipal Scrapers Contributor’s Guide Documentation

• Subjects (Technology, Transportation, Education)

Note: In addition to the data above, it’s common for Bill scrapers to also scrape in Vote information as well, since it’s
often linked directly from the Vote page.

1.5.2 Overview

Bills are certainly the most complicated and varied thing we’ll be scraping as part of this project. For starters, bills
are the only object that needs to be attached to a legislative session. A legislative session the period during which
actions can happen to a bill. After the end of a session, bills that have not been passed would need to be re-introduced.
For example, the US Congress has 2-year sessions that start at the beginning of odd years. Sessions sometimes have
numbers (the US congressional session starting in 2015 is the 114th session). Note that sessions are not necessarily
the same thing as terms. In the US House, a Rep’s term is 2 years long and coincides with the bounds of a session, but
Senators’ terms are 6 years long, so span multiple sessions. In some jurisdictions, members can be elected mid-session.

For municipal governments, it can be somewhat difficult to find information about legislative sessions. We recommend
contacting the city or town clerk’s office, or the press office for larger cities.

When you’ve figured out the beginning and end dates for the most recent session, add it to __init__.py:. The variable
legislative_sessions needs to be a list of dictionaries with at least an identifier, a name, a start_date and an end_date.
The identifier should be a unique description of the session (so the 2015 regular session of a legislature might have an
identifier of 2015), the name should be a human-readable string, and the dates should be in format YYYY-MM-DD.
For example:

legislative_sessions = [{"identifier":"2015",
"name":"2015 Regular Session",
"start_date": "2015-01-01",
"end_date": "2016-12-31"}]

Now that we’ve got at least one session in __init__.py, let’s start out with a simple scraper:

from pupa.scrape import Scraper
from pupa.scrape import Bill

class SeattleBillScraper(Scraper):

def scrape(self):
session = self.jurisdiction.legislative_sessions[0]
bill = Bill(identifier="R101",

legislative_session=session["identifier"],
title="More cookies for children",
classification="resolution")

bill.add_source("http://example.com")
yield bill

Only identifier, legislative_session and title are required. Classification will default to “bill” if none is given. Classifi-
cation may be any of the following:

• bill

• resolution

• concurrent resolution

14 Chapter 1. Writing Scrapers

Municipal Scrapers Contributor’s Guide Documentation

• joint resolution

• memorial

• commemoration

• concurrent memorial

• joint memorial

• proposed bill

• proclamation

• nomination

• contract

• claim

• appointment

• constitutional amendment

• petition

• order

• concurrent order

• appropriation

• ordinance

• motion

For a bicameral legislature, the chamber should also be included in the bill initialization (as ‘upper’ or ‘lower’).

We can add a variety of other pieces of information to a bill. All are optional and bills will successfully import without
any of these extras, but please note that internal quality checks may be triggered by bills with no versions or actions as
those ought to exist for every available bill. The scraper below gives examples of all additional pieces of data that can
be added:

from pupa.scrape import Scraper
from pupa.scrape import Bill

class SeattleBillScraper(Scraper):

def scrape(self):
session = self.jurisdiction.legislative_sessions[0]
bill = Bill(identifier="R101",

legislative_session=session["identifier"],
title="More cookies for children",
classification="resolution")

bill.add_source("http://example.com")

#add a sponsor
bill.add_sponsorship(name="Joe Smith", #name of person or org

classification="Primary", #primary? secondary? first? co-sponsor? etc
entity_type="person", #person or organization
primary=True #boolean, T if primary, F otherwise
)

(continues on next page)

1.5. Writing a Bill Scraper 15

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

#add subject(s)
bill.add_subject("Nutrition")
bill.add_subject("Youth")

#add abstract or summary
bill.add_abstract(abstract="Provides every child with a cookie",

note="Abstract for introduced version")

#add other title(s) the bill may have gone by
#perhaps a former title or a subtitle?
bill.add_title("Om nom nom cookies")

#add other ID(s) the bill has previously had
#this can be useful for bills that are
#renamed or substituted or have an omnibus relationship
bill.add_identifier("R095")

#add versions of the bill text
bill.add_version_link(note="Introduced",

url="http://example.com/R101.pdf",
date="2015-05-05", #optional, YYYY-MM-DD
media_type="application/pdf" #optional but useful!
)

#add other documents (not versions)
#such as fiscal analysis, committee report,
#testimony, etc
bill.add_document_link(note="Fiscal Note",

url="http://example.com/R101/FiscalNote.pdf",
date="2015-05-05", #optional, YYYY-MM-DD
media_type="application/pdf" #optional but useful!
)

#add related bill, useful for bills that were replaced,
#substituted, in an omnibus relationship, continued
#from a previous session, etc.
bill.add_related_bill(identifier="R105",

legislative_session=session["identifier"],
relation_type="companion" #companion, prior-session,

#replaced-by, replaces
)

#add actions. an action can also take a chamber
#('upper' or 'lower') if this is a bicameral legislature
act = bill.add_action(description="Bill Introduced",

date="2015-05-05",
classification="introduction", #see note about allowed␣

→˓classifications
)

(continues on next page)

16 Chapter 1. Writing Scrapers

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

#add entities to the action. This is how you'd add
#committees or people who participated
act.add_related_entity(name="Transportation Committee",

entity_type="organization")

yield bill

Bill actions should be one of the following:
• filing

• introduction

• reading-1

• reading-2

• reading-3

• passage

• failure

• withdrawal

• substitution

• amendment-introduction

• amendment-passage

• amendment-withdrawal

• amendment-failure

• amendment-amendment

• committee-passage

• committee-passage-favorable

• committee-passage-unfavorable

• committee-failure

• executive-receipt

• executive-signature

• executive-veto

• executive-veto-line-item

• became-law

• veto-override-passage

• veto-override-failure

• deferral

• receipt

• referral

• referral-committee

1.5. Writing a Bill Scraper 17

Municipal Scrapers Contributor’s Guide Documentation

Note that when we actually scrape the site, we’d like to limit the bills we ingest to the current legislative session.
Depending on the site, this can be done by navigating to a page that only contains information from the current session,
or by limiting a search by the date range related to a session.

1.5.3 Scraping Votes

In almost every case, votes are found on the same page as bills, so we tend to scrape them from the bill scraper. Below
is an example (we’ve removed all but the required features of a bill to keep things shorter.)

Now, let’s take a look at how we can add Vote information to a bill:

from pupa.scrape import Scraper
from pupa.scrape import Bill, Vote

class SeattleBillScraper(Scraper):

def scrape(self):
session = self.jurisdiction.legislative_sessions[0]
bill = Bill(identifier="R101",

legislative_session=session["identifier"],
title="More cookies for children",
classification="resolution")

bill.add_source("http://example.com")

#create a vote
v = Vote(legislative_session=session["identifier"],

motion_text = 'Shall the bill pass the first reading?',
start_date = '2015-05-06', #date of the vote
classification = 'bill-passage', #or 'amendment-passage' or 'veto-

→˓override'
result = 'pass', #or 'fail'
bill = bill
)

#we'll add the legislators' votes below.
#note that sometimes only the counts are available,
#not how individuals vote. So skip to the counts if
#that's the case.

#add yes and no votes
v.yes("John Smith")
v.no("Susan Jones")
v.yes("Jessica Brown")

#add votes with other classifications
#option can be 'yes', 'no', 'absent',
#'abstain', 'not voting', 'paired', 'excused'
v.vote(option="absent",

voter="Angela Cruz")

#when possible it is best to set the vote
(continues on next page)

18 Chapter 1. Writing Scrapers

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

#counts separately from the way individuals voted
#this is important because vote documents can often
#be the hardest thing to parse and the most liekly to contain errors
#so if we can get good, reliable data on the vote count,
#we should use it.
v.set_count(option="yes", value=2)
v.set_count(option="no", value=1)
v.set_count(option="absent", value=1)

v.add_source("https://example.com/R101/votes")

yield bill
yield v

If you’re unable to scrape the Vote at the same time as you’re scraping that particular Bill, you can attempt to match
by using the alternate signature of the set_bill method:

v.set_bill("R101", chamber="upper")

This call will dispatch based on the type of the first argument. For more information, check out the pupa.models.
vote.Vote.set_bill() documentation.

1.6 Running the Scraper

As you develop it will be a good idea to run the scraper to ensure that the output JSON is in good shape.

Run the scraper:

$ pupa update seattle

Where seattle is simply a Python-importable path to your scraper directory. From there, the jurisdiction object
will be able to tell pupa where to find the scrapers.

In addition, there are some useful arguments to know about.

Firstly, when doing local testing, --fast disables Pupa’s scrape throttling, and uses the scrape_cache to prevent
fetching pages over the line. This is useful when doing prototyping, but shouldn’t be used regularly, since it puts more
load on these websites, and will read stale data (if your cache stays around).

Secondly, if don’t have an opencivicdata postgres database set up, it’s useful to pass --scrape to pupa, to prevent the
--import and --report stages from running.

Lastly, being able to restrict which scraper gets run by indicating people, bills, events or votes after the jurisdic-
tion.

At any point, you can run:

$ pupa update -h

To get most up-to-date information regarding the invocation of Pupa.

Usually, during rapid development, the invocation would look something like:

$ pupa update seattle people --fast

1.6. Running the Scraper 19

Municipal Scrapers Contributor’s Guide Documentation

1.6.1 Validating Data

After this completes, the data will be in the scraped_data folder. Each OpenCivic object that gets saved will be
written to scraped_data/<jurisdiction_id>/<type>_<tmp_id>.json.

This object will be a JSON-encoded OpenCivic object, which is a well-documented and defined format for Government
data.

By spot-checking a few of the entries, you can check to see if data looks funny, or if things aren’t being categorized
properly.

If you want to spot-check some data, using a modern POSIX system should allow you to run something similar to:

$ python -m json.tool $(ls | shuf -n 1) | vim -

Feel free to change vim to whatever editor you prefer for such tasks.

If you do use vim, there’s a helpful JSON Plugin

Here is an example JSON file you’d get if you run the events scraper we created in Writing an Events Scraper, although
note that your IDs will be different:

{
"_id": "efa7ccee-f4d6-11e4-b1eb-843a4bcaaa18",
"agenda": [

{
"description": "Testimony from concerned citizens",
"media": [

{
"date": "",
"links": [

{
"media_type": "application/pdf",
"url": "http://example.com/hearing/testimony.pdf"

}
],
"note": "Written version of testimony"

}
],
"notes": [],
"order": "0",
"related_entities": [

{
"entity_type": "committee",
"name": "Transportation",
"note": "participant"

},
{

"entity_type": "committee",
"name": "Environment and Natural Resources",
"note": "participant"

},
{

"entity_type": "person",
"name": "Jane Brown",
"note": "participant"

(continues on next page)

20 Chapter 1. Writing Scrapers

http://www.vim.org/scripts/script.php?script_id=1945

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

},
{

"entity_type": "person",
"name": "Alicia Jones",
"note": "participant"

},
{

"entity_type": "person",
"name": "Fred Green",
"note": "participant"

},
{

"entity_type": "bill",
"name": "HB101",
"note": "consideration"

}
],
"subjects": [

"Transportation",
"Environment"

]
}

],
"all_day": false,
"classification": "event",
"description": "",
"documents": [],
"end_time": null,
"extras": {},
"links": [],
"location": {

"coordinates": null,
"name": "unknown",
"note": ""

},
"media": [

{
"date": "",
"links": [

{
"media_type": "video/mpeg",
"url": "http://example.com/hearing/video.mpg"

}
],
"note": "Video of meeting"

},
{

"date": "",
"links": [

{
"media_type": "application/pdf",
"url": "http://example.com/hearing/minutes.pdf"

(continues on next page)

1.6. Running the Scraper 21

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

}
],
"note": "Meeting minutes"

}
],
"name": "Hearing",
"participants": [

{
"entity_type": "committee",
"name": "Transportation Committee",
"note": "participant"

},
{

"entity_type": "person",
"name": "Joe Smith",
"note": "Hearing Chair"

}
],
"sources": [

{
"note": "",
"url": "http://example.com"

}
],
"start_time": "1776-07-04T17:08:00+00:00",
"status": "confirmed",
"timezone": "US/Pacific"

}

1.7 Submitting a Pull Request

The municipal scraping effort we’re working on is extremely friendly to contributors of all backgrounds, and we accept
code contributions via GitHub Pull Requests.

Before you begin, you should create a GitHub account if you don’t already have one, and learn the basics of using Git
(slightly out of scope for this document). This guide assumes basic proficiency with Git.

Please test your scraper locally, but if you have questions we’re all quite happy to go back and forth in the github
comments to work on changes, if they’re needed.

In general, if you just keep the Pull Request short and self-contained. If you’ll be modifying multiple jurisdictions,
please submit separate pull requests. It will make life much easier for the reviewers!

22 Chapter 1. Writing Scrapers

Municipal Scrapers Contributor’s Guide Documentation

1.7.1 Fork the repo you want to contribute to

First navigate to the repo you want to contribute to and create a fork. If you’re contributing a municipal scraper within
the United States, for example, view that repo’s page on Github and click the fork button.

This creates a repo (called scrapers-us-municipal, if you’ve followed the link just up above) on your personal
account that you can commit to.

You can clone this repo down to your local machine by using git clone (do read up on the GitHub guide if you’re
having trouble with this step - or git!)

After pulling the repo down, we’ll set a new remote called upstream to help interact with the opencivicdata repo
later on.

$ git remote add upstream git@github.com:opencivicdata/municipal-scrapers-us.git

If you cloned the opencivicdata repo before you forked the repo on GitHub, don’t worry - you can adjust this fairly
quickly!

$ git remote rm origin
$ git remote add origin git@github.com:yourbadself/municipal-scrapers-us.git
$ git fetch origin

See also:
Github’s docs on forking a repo:

https://help.github.com/articles/fork-a-repo

1.7.2 Submit a pull request

Before you submit your Pull Request, it’s quite handy to run through a quick checklist of common (and easy to catch)
gotchas:

• Have you added yourself to the AUTHORS file? If not, please do.

• Is your Pull Request up-to-date with the opencivicdata repo? If it’s not, it might be helpful to jump down to
the Keeping your branch up to date section below.

Finally, navigate to the commit you made to your forked repo, and click the button to submit a pull request.

See also:
Github’s docs on using pull request:

https://help.github.com/articles/fork-a-repo

1.7.3 Best Practice

Note: This guide won’t get into a generic git tutorial, and assumes basic proficiency with git and some knowledge
of GitHub.

It’s good practice to use a branch when working on the scrapers, this helps continue to integrate changes into your
branch, and helps you compare changes without much effort. With many people working on the codebase at the same
time, it’s likely we’ll end up with changes that impact others sometimes. By using a branch, it’s much easier to fix these
conflicts.

1.7. Submitting a Pull Request 23

https://github.com/opencivicdata/scrapers-us-municipal
https://help.github.com/articles/fork-a-repo#step-2-clone-your-fork
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/fork-a-repo

Municipal Scrapers Contributor’s Guide Documentation

Warning: Please do make sure you always create a branch off the master branch, unless you’ve got lots of git
experience and are doing this for a very specific reason.

To create a branch, you can checkout a new branch (this operation creates the branch, so don’t worry about using git
branch just yet.)

$ git checkout -b bugfix/fix-this-broken-jurisdiction

It’s common to prefix a branch with one of bugfix, or feature (or anything else that’s short and desriptive). After
the prefix, you should add a descriptive slug related to the change, so that it’s easy to remember which branch is which.
These are sometimes called “Topic branches”.

After this, you can check which branch you’re working on by running git branch, and looking for the marked branch.

$ git branch
* bugfix/fix-this-broken-jurisdiction
master

To switch back to the master branch (for any reason), you can checkout the branch again.

$ git checkout master
$ git branch
bugfix/fix-this-broken-jurisdiction

* master

1.7.4 Keeping your branch up to date

It saves quite a bit of time if you can ensure that all changes have been incorporated in your branch when sending in a
Pull Request. Often times this is not an issue for short-lived branches, however, sometimes people have changed code
in the opencivicdata repo, and you need to merge code from “upstream” into your working branch.

Let’s go over how to do this.

Warning: The following assumes you have a setup similar to above. Make sure that you have the upstream remote
set up, and are working on a topic branch.

Firstly, be sure that you’ve commited all your code, and you’re up to date.

$ git branch
* bugfix/fix-this-broken-jurisdiction
master

$ git checkout master
$ git pull upstream master
$ git checkout bugfix/fix-this-broken-jurisdiction
$ git merge master

Please do remember to change bugfix/fix-this-broken-jurisdiction with the name of your topic branch that
you’re working on (as seen in the output of the first command run).

24 Chapter 1. Writing Scrapers

Municipal Scrapers Contributor’s Guide Documentation

1.7.5 Checking what you’ve changed

You can check how much has changed at any point very simply, by using git diff. Something like:

$ git diff master --color

Can come in quite handy when reviewing changes before sending in a Pull Request.

1.8 Common tips for writing scrapers

The following doc contains a list of useful recipies to help scrape data down from legislative websites. These are by no
means the only way to do these things, but it’s a description of some of the things we’ve found to work well.

1.8.1 Fetching a page and setting URLs to absolute paths

It’s handy to be able to set all the relative URL paths to absolute paths. lxml has a pretty neat facility for doing this.

It’s not uncommon to see a method such as:

def lxmlize(self, url):
entry = self.get(url).text
page = lxml.html.fromstring(entry)
page.make_links_absolute(url)
return page

1.8.2 Getting the current session

We might want to know what the current legislative session is. A legislative session is required for a bill, and can
be helpful in limiting the duration of a scrape (for legislatures that have persistent pages, we probably don’t want to
scrape all bills/legislators/events back to when they started keeping track!) Sessions are created in __init__.py as a
list of dictionaries. Jurisdictions can do all kinds of weird things with sessions (we’ve seen them create sessions inside
sessions) so keeping track based on date won’t work. Instead, you’ll need to order sessions chronologically, with the
current one on top. For example:

legislative_sessions = [{"identifier":"2015",
"name":"2015 Regular Session",
"start_date": "2015-01-01",
"end_date": "2016-12-31"},
{"identifier":"2013",
"name":"2013 Regular Session",
"start_date": "2013-01-01",
"end_date": "2014-12-31"}]

Then to get the current session from any scraper, you can call:

self.jurisdiction.legislative_sessions[0]

1.8. Common tips for writing scrapers 25

Municipal Scrapers Contributor’s Guide Documentation

1.8.3 Common XPath tricks

The following is a small list of very common tricks hackers use in xpath expressions.

Quick text grabs

Getting text values of HTML elements:

//some-tag/ul/li/text()

Which would be roughly similar to the following pseudo-code:

[x.text for x in page.xpath("//some-tag/ul/li")]

or, more abstractly:

for el in page.xpath("//some-tag/ul/li"):
deal_with(el.text)

This is helpful for quickly getting the text values of a bunch of nodes at once without having to call .text on all of
them. It’s worth noting that this is different behavior than .text_content().

Class limiting / ID limiting

Sometimes it’s helpful to get particular nodes of a given class or ID:

//some-tag[@class='foo']//div[@id='joe']

This expression will find all div objects with an id of joe (I know, you should only use an id once, but alas sometimes
these things happen) that are sub-nodes of a some-tag with a class of foo.

In addition, you can also limit by other things, too, such as text():

//some-other-tag[text()="FULL TEXT"]/*

This will find any some-other-tag tags that contain FULL TEXT as their text() entry. As you can guess, most XPath
expressions (etc)

Contains queries

With the above, it’s sometimes needed to search for all class attributes that contain a given string (sometimes sites
have quite a bit of autogenerated stuff around an ID or class name, but a substring stays in place)

Let’s take a look at limiting queries:

//some-tag[contains(@class, 'MainDiv')]

This will find any instance of some-tag who’s class contains the substring MainDiv. For example, this will match an
element such as <some-tag class='FooBar12394MainDiv333' ></some-div>, but it will not match <some-tag
class='FooBarMain123Divsf'></some-div> or a some-tag without a class.

Keep in mind that the @foo can be any attribute of the HTML element, such as @src for an img tag or an @href for
an a tag.

26 Chapter 1. Writing Scrapers

Municipal Scrapers Contributor’s Guide Documentation

Array Access

Warning: Be careful with this one!

You can access indexes of returned lists using square brackets (just like in Python itself), although this tends to not be
advised (since the counts can often change, and you may end up scraping in bad data).

However, this is sometimes needed:

//foobar/baz[1]/*

to get all entries under the 1st baz under a foobar. It’s also worth noting that xpath indexes are 1-based not 0-based.
Start your counts from 1 not 0 and you’ll have a much better day!

Axis Overview

XPath also features what are known as the “Axis”. The “axis” is a way of selecting other nodes via a given node (which
is usually defined by an xpath)

The most useful one is following-sibling or parent

Let’s take a look at following-sibling:

//th[contains(text(), "foo")]/following-sibling::td

This will find any th elements that contain foo in the text(), and search for any td elements which follow the th
element.

Or, if we look at a parent relation:

//img[@id='foo']/parent::div[@class='bar']/text()

will fetch the text of a div with a class set to bar who has a sub-node, which is an img with an id set to foo. This
expression will continue all the way back up to the root node.

1.8.4 Writing “defensive” scrapers

We tend to write very fragile scrapers - prone to break very loudly (and as soon as we can) when/if the site changes.

As a general rule, if the site has changed, we have a strong chance of pulling in bad data. As a result, we don’t want the
scraper to continue on without throwing an error, so that we can be sure bad data never gets imported into the database.
We do this by hard-coding very fragile xpaths, which use full names (rather than contains, unless there’s a reason to),
and always double-check the incoming data looks sane (or raise an Exception).

One way that’s common to help trigger breakage when table rows get moved around is to unpack the list into variables
- this also has an added bonus of being more descriptive in what is where in the row, which aids in debugging a broken
scraper. Usually, you’d see something like:

for row in page.xpath("//table[@id='foo']/tr"):
name, district, email = row.xpath("./*")

Which will trigger breakage if the number of rows change. It still helps to sill assert that you have sane values in such
a table, since the order of the entries may change, and you’ll end up changing everyone’s name to “District 5”.

1.8. Common tips for writing scrapers 27

Municipal Scrapers Contributor’s Guide Documentation

Another common way of doing this is by blindly using an index off an xpath, forcing an IndexError if the index isn’t
present. This helps avoid queries where nothing is returned, or too little is returned. You should also be careful to
check the len() of the values to ensure too much wasn’t returned as well.

Commonly, scrapers need to normalize and transform bad data into good data (in edge-cases, such as setting party
data), and this can be a good place to add a quick check that no data we didn’t expect made it into the database.

Using a dict to index the scraped data is a good way of doing this:

party = {"democrat": "Democratic",
"republican": "Republican",
"independent": "Independent"}[scraped_party.lower().strip()]

You can be sure that if the data wasn’t one of the expected 3 that it will raise a KeyError and force someone to ensure
the scraped data is (in fact) correct (or if a new party needs to be added).

Since this is infrequent enough, this is a pretty good tradeoff for data quality (and is slightly easier to maintain than a
big if/elif/else block).

The end goal here is to make sure that no scraper ever allows bad data into the database. So long as your scraper is
doing this, you’ve written a defensive scraper!

28 Chapter 1. Writing Scrapers

CHAPTER

TWO

OPEN CIVIC DATA FORMATS

2.1 Adopting the OCD Specification

Warning: Parts of Open Civic Data underwent a large refactor as of mid-2014, some information on this page
may be out of date. We’re working on updating this documentation as soon as possible.

We’ll remove these messages from pages as they’re updated and vetted.

If you’re a city or vendor looking to adopt the OCD specification, this section serves as an implementation guide,
including working examples from the OCD API. When you’ve implemented any one of the OCD elements, please
contact us so we can begin collecting your data into Open Civic Data.

To begin, you’ll want to find the division id for your locality.

2.1.1 Finding Your Division ID

If you’re within the United States (or a selection of other countries), your geographic division should already be included
in the database. To look up your division id, visit the Open Civic Data editor and lookup tool. Start by typing in your
state, and then locality name.

For instance, by typing in ‘OH’ for Ohio and then ‘Cleveland’ for the City of Cleveland, the division id displayed should
look like this:

ocd-division/country:us/state:oh/place:cleveland

This data is pulled from the US Census and should include every geographic division listed in the Census. If your
division is too new to be in the Census or you otherwise need to add it, please take a look at the OCD repository for
the division ids on Github. If you’re outside the United States, chances are your division has not been added yet. You
can clone the aforementioned repository to see if your division exists. If it does not, review the requirements for new
ids and then send an email to our google group. New ids for divisions and jurisdictions are created and agreed upon by
consensus via the mailing list, to prevent collisions.

29

mailto:opencivicdata@sunlightfoundation.com
http://editor.opencivicdata.org/geo/select/
https://github.com/opencivicdata/ocd-division-ids
https://github.com/opencivicdata/ocd-division-ids
https://groups.google.com/forum/#!forum/open-civic-data

Municipal Scrapers Contributor’s Guide Documentation

2.1.2 Finding or Creating Organizations

Now that you’ve found your geopolitical division, you need to find (or create) your organization. To see if your organi-
zation already exists, you can use the same editor and lookup tool that you used to look up the division. Following the
example above, if you click on the division id for Cleveland, you should see a list of all the organizations inside that
division.

If you see your organization, or a parent of your organization, take note of the organization id and the jurisdiction id. If
not, you’ll need to create these. Jurisdiction ids are used to help identify top level parents, such as a city council or state
legislature. These bodies usually have multiple children, and sometimes multiple levels of children, such as committees
or the upper and lower chambers of a state legislature. The jurisdiction id helps to identify the top level governing body
for all of the organizations underneath it. You can read more about creating a jurisdiction and organization ids here.

For example, here’s how the data looks for the Ohio state senate. The division id references the state of Ohio, and the
jurisdiction id references the overall Ohio state legislature (including the house and senate). The organization id for the
Ohio state senate is ocd-organization/b87d2136-3b43-11e3-9ac3-1231391cd4ec.

{
division_id: "ocd-division/country:us/state:oh",
classification: "legislature",
founding_date: null,
chamber: "upper",
identifiers: [

],
posts: [

{
role: "member",
label: "Member",
num_seats: 1,
id: "1"

},
{

role: "member",
label: "Member",
num_seats: 1,
id: "10"

},
{

role: "member",
label: "Member",
num_seats: 1,
id: "11"

}
...

],
other_names: [

],
contact_details: [

],
id: "ocd-organization/b87d2136-3b43-11e3-9ac3-1231391cd4ec",
links: [

(continues on next page)

30 Chapter 2. Open Civic Data Formats

http://editor.opencivicdata.org/geo/select/

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

],
name: "Ohio General Assembly, Senate",
dissolution_date: null,
sources: [

{
url: "http://www.legislature.state.oh.us/",
note: null

}
],
memberships: [

...
],
parent_id: null,
extras: {

},
abbreviation: "oh",
jurisdiction_id: "ocd-jurisdiction/country:us/state:oh/legislature"

}

2.1.3 Publishing Your Local Representatives

Representatives can be expressed using the Person Object format. You can read more about the explicit elements on
the person page but for a quick start, here’s an example in JSON:

{
"_type": "person",
"contact_details": [

{
"note": "",
"type": "email",
"value": "roswellmayor@roswell-nm.gov"

},
{

"note": "",
"type": "voice",
"value": "575-637-6202"

}
],
"name": "Del Jurney",
"links": [],
"gender": "m",
"image": "http://www.roswell-nm.gov/images/library/Image/del-jurney.jpg,
"other_names": [],
"sources": [

{
"url": "http://www.roswell-nm.gov/staticpages/index.php/city-mayor,
"note": ""

}
],

(continues on next page)

2.1. Adopting the OCD Specification 31

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

"extras": {},
"_id": "ocd-person/bff59848-b1c4-11e2-b819-12313d2facc4",
"biography": "Roswell City Mayor Del Jurney. The Mayor is elected at-large and␣

→˓represents all neighborhood wards within the City."
}

In person objects, the only absolutely required field is the name attribute. If the type (person, in this case) cannot be
inferred from the endpoint, then a type attribute with the value “person” is also necessary. The more information you
add, the better. Person objects can also be linked to organizations. For instance, in the OCD API, each organization
object has a ‘memberships’ attribute, which is an array of people holding office. Here’s an example of the memberships
from the organization object displayed above:

memberships: [
{

person: {
contact_details: [

],
birth_date: null,
biography: null,
chamber: "upper",
identifiers: [

],
name: "Nina Turner",
image: "http://www.ohiosenate.gov/senate/Assets/Headshots/Small/25.jpg",
updated_at: "2014-04-16T00:18:58.287",
other_names: [

],
death_date: null,
id: "ocd-person/ba595e34-3b43-11e3-9ac3-1231391cd4ec",
links: [

{
url: "http://www.ohiosenate.gov/senate/turner",
note: "Homepage"

}
],
summary: null,
district: "25",
extras: {

first_name: "Nina",
last_name: "Turner",
+biography: "Representing Ohio’s 25",
office_phone: "(614) 466-4583"

},
gender: null,
sources: [

{
url: "http://www.ohiosenate.gov/senate/members/senate-directory"

}
],

(continues on next page)

32 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

created_at: "2011-02-22T21:25:58.284"
},
contact_details: [

{
value: "Senate Building 1 Capitol Square, 2nd Floor Columbus, OH␣

→˓43215",
note: "Capitol Office",
type: "address"

},
{

value: "614-466-4583",
note: "Capitol Office",
type: "phone"

}
],
end_date: null,
sources: [

],
role: null,
chamber: "upper",
organization_id: "ocd-organization/b87d2136-3b43-11e3-9ac3-1231391cd4ec",
post_id: "25",
extras: {

term: "2013-2014"
},
start_date: "2013",
unmatched_legislator: null,
person_id: "ocd-person/ba595e34-3b43-11e3-9ac3-1231391cd4ec"

},

...
]

The object includes lots of information about the legislature seat generally, and then contains a person attribute that
contains information about the legislator filling this seat specifically. The generic information about the seat is important
because it can exist and describe the seat even if it isn’t presently occupied.

2.1.4 And More!

These are the basics of what any API or data store that adopts the OCD standard should contain. You can read more
about other objects, like events, bills and votes on their respective pages. OCD is a new effort and improvements to the
standard are being made all the time. If you have suggestions, questions, or want to participate in shaping the OCD
standard, please join our google group.

2.1. Adopting the OCD Specification 33

https://groups.google.com/forum/#!forum/open-civic-data

Municipal Scrapers Contributor’s Guide Documentation

2.2 Data Types

The Open Civic Data specifications define the following core types:

division
A political geography such as a state, county, or congressional district. May have multiple boundaries over their
lifetime.

Division IDs take the form ocd-division/country:<country_code>[<type>:type_id>]+. The canonical
repository of division IDs is opencivicdata/ocd-division-ids You can also look up a division id using the Open
Civic Data editor and lookup tool.

See Division Objects for details.

jurisdiction
A governing body that exists within a division. While ‘Florida’ would be a division, the Florida State Legislature
would be a jurisdiction.

Jurisdictions IDs take the form ocd-jurisdiction/<jurisdiction_id>/<jurisdiction_type> where
jurisdiction_id is the ID for the related division without the ocd-division/ prefix and jurisdiction_type
is council, legislature, etc.

See Jurisdiction Objects for details.

person
A person, typically a politician or government official.

The Popolo person schema is used to represent person data.

See Person Objects for details.

organization
A group of people, such as a city council, state senate, or committee.

The Popolo organization schema is used to represent organization data.

See Organization Objects for details.

bill
A legislative document and its history, may technically be a resolution, appointment, or contract so long as it has
a name and would be considered to have a legislative history.

See Bill Objects for details.

vote
The record of a vote taken on a motion, such as a confirmation or passage of a bill. May contain individual
legislator’s yay/nay votes or just an outcome.

See Vote Objects for details.

event
A legislative event, such as a meeting or hearing.

See Event Objects for details.

34 Chapter 2. Open Civic Data Formats

https://github.com/opencivicdata/ocd-division-ids
http://editor.opencivicdata.org/geo/select/
http://editor.opencivicdata.org/geo/select/
http://popoloproject.com/specs/person.html
http://popoloproject.com/specs/organization.html

Municipal Scrapers Contributor’s Guide Documentation

2.3 Jurisdiction Objects

Jurisdiction objects have the following fields:

2.3.1 Basic Details

name (string)
Name of jurisdiction (e.g. North Carolina General Assembly) (required)

url (string)
URL pointing to jurisdiction’s website. (required)

classification (string)
A jurisdiction category. (required)
Allowed values:

• government

• legislature

• executive

• school_system

• transit_authority

legislative_sessions (object)
Dictionary describing sessions, each key is a session slug that must also appear in one sessions list in terms.
Values consist of several fields giving more detail about the session. (required)
Each element in session_details is an object with the following keys:

name (string)
Name of session, typically a year span like 2011-2012. (required)

identifier (string)
Identifier of session. (required)

classification (string)
Type of session: primary or special.

start_date (datetime)
Start date of session.

end_date (datetime)
End date of session.

2.3.2 Additional Metadata

feature_flags (array)
A way to mark certain features as available on a per-jurisdiction basis. (required, minItems: 0)
Each element in feature_flags is of type (string)

2.3. Jurisdiction Objects 35

Municipal Scrapers Contributor’s Guide Documentation

2.4 Division Objects

Warning: Parts of Open Civic Data underwent a large refactor as of mid-2014, some information on this page
may be out of date. We’re working on updating this documentation as soon as possible.

We’ll remove these messages from pages as they’re updated and vetted.

2.4.1 Basic Details

id
Open Civic Data division ID.

country
Two-letter ISO-3166 alpha-2 country code. (e.g. ‘us’, ‘ca’)

display_name
Human-readable name for division.

2.4.2 Additional Fields

geometries
A list of associated geometries, each of which has the following fields:

start
Best approximation of date boundary became effective.

end
Best approximation of date boundary was replaced or made obsolete (null for current boundaries).

boundary
Boundary object- fields are determined from underlying data source, but always provides:

centroid
Object containing the centroid, not guaranteed to be within the object.

Example:

{ "type": "Point", "coordinates": [-176.59989528409687, 51.88215100813731] }

extent
Object describing the extents. [left-most, lower-most, right-most, upper-most]

Example:

[-176.71309799999997, 51.80080899999999, -176.46673599999997, 51.
→˓95761899999999]

children
A list of child jurisdiction ids.

36 Chapter 2. Open Civic Data Formats

http://en.wikipedia.org/wiki/ISO_3166-1

Municipal Scrapers Contributor’s Guide Documentation

2.5 Person Objects

Person objects have the following fields:

2.5.1 Basics

name (string)
A person’s preferred full name (required)

image (string, null)
A URL of a head shot (required)

contact_details (array)
Contact information for this entity. (required, minItems: 0)
Each element in contact_details is an object with the following keys:

note (string, null)
for grouping data by location/etc. (required)

type (string)
type of contact (e.g. phone, email, address) (required)

value (string)
actual phone number/email address/etc. (required)

label (string, null)
human-readable label (required)

links (array)
URLs for documents about the person (required, minItems: 0)
Each element in links is an object with the following keys:

note (string, null)
A note, e.g. ‘Wikipedia page’ (required)

url (string)
A URL for a document about the person (required)

2.5.2 Extended Details

sort_name (string, null)
A name to use in a lexicographically ordered list (required)

family_name (string, null)
One or more family names (required)

given_name (string, null)
One or more primary given names (required)

gender (string, null)
A gender (required)

summary (string, null)
A one-line account of a person’s life (required)

national_identity (string, null)
A national identity (required)

2.5. Person Objects 37

Municipal Scrapers Contributor’s Guide Documentation

biography (string, null)
An extended account of a person’s life (required)

birth_date (string, null)
A date of birth (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

death_date (string, null)
A date of death (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

2.5.3 Alternate Names/Identifiers

identifiers (array)
IDs other than the primary ID that the object may be known by. (required, minItems: 0)
Each element in identifiers is an object with the following keys:

scheme (string, null)
What service this identifier is used by. (required)

identifier (string)
The 3rd-party identifier, such as OKL0001000. (required)

other_names (array)
Alternate or former names for this object. (required, minItems: 0)
Each element in other_names is an object with the following keys:

note (string, null)
An optional note describing where this alternate name came from or its relationship to the entity. (required)

name (string)
An alternate name this object is sometimes known by. (required)

end_date (string, null)
The date at which this name was no longer valid. (null if still valid/valid indefinitely) (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

start_date (string, null)
The date at which this name became valid.(null if unknown/valid indefinitely) (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

2.5.4 Common Fields

updated_at (string, datetime, null)
The time at which the resource was last modified (required)

created_at (string, datetime, null)
The time at which the resource was created (required)

sources (array)
URLs for sources relating to the object (required, minItems: 1)
Each element in sources is an object with the following keys:

38 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

url (string)
URL of resource used to collect information (required)

note (null, string)
note about what information this URL was used for (required)

2.6 Organization Objects

Organization objects have the following fields:

2.6.1 Basics

name (string)
A primary name, e.g. a legally recognized name (required)

classification (string, null)
An organization category, e.g. committee (required)
Allowed values:

• legislature

• executive

• upper

• lower

• party

• committee

• commission

• corporation

• agency

• department

parent_id (string, null)
The ID of the organization that contains this organization (required)

contact_details (array)
Contact information for this entity. (required, minItems: 0)
Each element in contact_details is an object with the following keys:

note (string, null)
for grouping data by location/etc. (required)

type (string)
type of contact (e.g. phone, email, address) (required)

value (string)
actual phone number/email address/etc. (required)

label (string, null)
human-readable label (required)

2.6. Organization Objects 39

Municipal Scrapers Contributor’s Guide Documentation

links (array)
URLs for documents about the person (required, minItems: 0)
Each element in links is an object with the following keys:

note (string, null)
A note, e.g. ‘Wikipedia page’ (required)

url (string)
A URL for a document about the person (required)

2.6.2 Posts

posts (array)
Posts within the organization (required, minItems: 0)
Each element in posts is an object with the following keys:

id (string, null)
The post’s unique identifier (required)

label (string)
A label describing the post (required)

role (string, null)
The function that the holder of the post fulfills (required)

start_date (string, null)
The date on which the post was created (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

end_date (string, null)
The date on which the post was eliminated (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

contact_details (array)
Contact information for this entity. (required, minItems: 0)
Each element in contact_details is an object with the following keys:

note (string, null)
for grouping data by location/etc. (required)

type (string)
type of contact (e.g. phone, email, address) (required)

value (string)
actual phone number/email address/etc. (required)

label (string, null)
human-readable label (required)

links (array)
URLs for documents about the person (required, minItems: 0)
Each element in links is an object with the following keys:

note (string, null)
A note, e.g. ‘Wikipedia page’ (required)

40 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

url (string)
A URL for a document about the person (required)

2.6.3 Extended Details

image (string, null)
A URL of an image (required)

founding_date (string, null)
A date of founding (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

dissolution_date (string, null)
A date of dissolution (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

2.6.4 Alternate Names/Identifiers

identifiers (array)
IDs other than the primary ID that the object may be known by. (required, minItems: 0)
Each element in identifiers is an object with the following keys:

scheme (string, null)
What service this identifier is used by. (required)

identifier (string)
The 3rd-party identifier, such as OKL0001000. (required)

other_names (array)
Alternate or former names for this object. (required, minItems: 0)
Each element in other_names is an object with the following keys:

note (string, null)
An optional note describing where this alternate name came from or its relationship to the entity. (required)

name (string)
An alternate name this object is sometimes known by. (required)

end_date (string, null)
The date at which this name was no longer valid. (null if still valid/valid indefinitely) (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

start_date (string, null)
The date at which this name became valid.(null if unknown/valid indefinitely) (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

2.6. Organization Objects 41

Municipal Scrapers Contributor’s Guide Documentation

2.6.5 Common Fields

updated_at (string, datetime, null)
The time at which the resource was last modified (required)

created_at (string, datetime, null)
The time at which the resource was created (required)

sources (array)
URLs for sources relating to the object (required, minItems: 1)
Each element in sources is an object with the following keys:

url (string)
URL of resource used to collect information (required)

note (null, string)
note about what information this URL was used for (required)

2.7 Bill Objects

Warning: Parts of Open Civic Data underwent a large refactor as of mid-2014, some information on this page
may be out of date. We’re working on updating this documentation as soon as possible.

We’ll remove these messages from pages as they’re updated and vetted.

Bill objects have the following fields:

2.7.1 Basics

_type (string)
All bills have a _type field set to bill. (required)
Allowed values:

• bill

organization (string, null)
name of the legislative body that this bill belongs to (required)

organization_id (string, null)
ID of legislative body that this bill belongs to (required)

session (string)
associated with one of the jurisdiction’s sessions (required)

name (string)
jurisdiction-assigned permanent name. Must be unique within a given session (e.g. HB 3). Note: not to be
confused with title. (required)

chamber (string, null)
chamber vote took place in (if legislature is bicameral, otherwise null) (required)
Allowed values:

• upper

42 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

• lower

• joint

title (string)
primary display title for the bill (required)

type (array)
array of types (e.g. bill, resolution) (required, minItems: 0)
Each element in type is of type (string)

subject (array)
List of related subjects. (required, minItems: 0)
Each element in subject is of type (string)

summaries (array)
List of summaries of bill, each item in list has a note and text attribute. (required, minItems: 0)
Each element in summaries is an object with the following keys:

note (string, null)
note describing source of summary (required)

text (string)
Summary of bill. (required)

2.7.2 Common Fields

updated_at (string, datetime)
the time that the object was last updated

created_at (string, datetime)
the time that this object was first created

sources (array)
URLs for sources relating to the object (required, minItems: 1)
Each element in sources is an object with the following keys:

url (string)
URL of resource used to collect information (required)

note (null, string)
note about what information this URL was used for (required)

2.7.3 Other/Related Bills

other_titles (array)
list of other titles this bill is known by.A common use is when a state provides a common title and a long or techni-
cal title as well. It is also acceptable to include popular but unofficial titles of the bill as well, such as’Obamacare’
for the ‘Patient Protection and Affordable Care Act.’note can be used to describe the relationship this has to the
bill, for example Obamacare might be noted as a colloquial name. Each item in the list has a title and a note.
(required, minItems: 0)
Each element in other_titles is an object with the following keys:

note (string, null)
Note describing source. (required)

2.7. Bill Objects 43

Municipal Scrapers Contributor’s Guide Documentation

title (string)
Alternate title. (required)

other_names (array)
list of other names this bill is known by in the current session, for example if HB 33 and SB 17 refer to the same
bill this prevents having to have identical entries for each. (required, minItems: 0)
Each element in other_names is an object with the following keys:

note (string, null)
note describing why this name is attached (required)

name (string)
name (e.g. HB 22) (required)

related_bills (array)
Links to related bills. Currently only used for companion bills, but extensible for other uses. (required,
minItems: 0)
Each element in related_bills is an object with the following keys:

session (string)
Session of related bill. (required)

name (string)
Name of related bill. (required)

relation_type (string)
(required)
Allowed values:

• companion

• prior-session

• replaced-by

• replaces

2.7.4 Sponsors and Actions

sponsors (array)
List of entities responsible for sponsoring/authoring the bill. (required, minItems: 0)
Each element in sponsors is an object with the following keys:

_type (string, null)
Type of entity if the sponsor has been resolved to another entity in the database. (required)
Allowed values:

• organization

• person

name (string)
Name of sponsor, as given by source. (required)

sponsorship_type (string)
Type of sponsorship, via upstream source. (required)

primary (boolean)
Indicates if sponsor is considered primary by source (required)

44 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

chamber (string, null)
Chamber of sponsor. (required)
Allowed values:

• upper

• lower

id (string, null)
ID of entity if the sponsor has been resolved to another entity in the database. (required)

actions (array)
List of actions taken on the bill. (required, minItems: 0)
Each element in actions is an object with the following keys:

date (string)
date of action (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

type (array)
array of normalized action types (required, minItems: 0)
Each element in type is of type (string)

description (string)
description of the action taken as given by source (required)

actor (string, null)
name for the actor (e.g. ‘upper’, ‘lower’, etc.) (required)

related_entities (array)
list of related entities for the action, such as related committee for a referral or a person for a sponsorship.
(required, minItems: 0)
Each element in related_entities is an object with the following keys:

_type (string, null)
Type of entity if the sponsor has been resolved to another entity in the database. (required)
Allowed values:

• organization

• person

name (string)
Name of entity given by source data (required)

id (string, null)
ID of entity if the sponsor has been resolved to another entity in the database. (required)

2.7. Bill Objects 45

Municipal Scrapers Contributor’s Guide Documentation

2.7.5 Documents and Versions

documents (array)
Any non-version related documents, elements are identical to versions. (required, minItems: 0)
Each element in documents is an object with the following keys:

date (string, null)
Document posting date (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

type (string, null)
Type of document (required)

name (string)
Name of document (required)

links (array)
List of links to text for this document (pdf, html, etc.). (required, minItems: 0)
Each element in links is an object with the following keys:

media_type (string)
IANA Media Type of document (required)

url (string)
URL to document (required)

text (string)
Text of the document

versions (array)
Versions of a bill’s text (First Printing, As Amended, etc.) (required, minItems: 0)
Each element in versions is an object with the following keys:

date (string, null)
Version posting date (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

type (string, null)
Type of version (required)

name (string)
Name of version (required)

links (array)
List of links for this version (pdf, html, etc.). (required, minItems: 0)
Each element in links is an object with the following keys:

media_type (string)
IANA Media Type of document (required)

url (string)
URL to document (required)

text (string)
Text of the document

46 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

2.8 Vote Objects

Warning: Parts of Open Civic Data underwent a large refactor as of mid-2014, some information on this page
may be out of date. We’re working on updating this documentation as soon as possible.

We’ll remove these messages from pages as they’re updated and vetted.

Vote objects have the following fields:

2.8.1 Basic Fields

organization (string, null)
name of the voting organization (required)

organization_id (string, null)
id of the voting organization (required)

_type (string)
All vote objects must have a _type field set to vote. (required)
Allowed values:

• vote

session (string)
Associated with one of the jurisdiction’s sessions (required)

chamber (string, null)
chamber vote took place in (if legislature is bicameral, otherwise null) (required)
Allowed values:

• upper

• lower

• joint

date (string)
date of the action (required)
(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

motion (string)
description of motion (from upstream source) (required)

type (array)
array of types (required, minItems: 0)
Each element in type is of type (string)

Allowed values:
• bill-passage

• amendment-passage

• veto-override

passed (boolean)
boolean indicating if vote passed (required)

2.8. Vote Objects 47

Municipal Scrapers Contributor’s Guide Documentation

2.8.2 Common Fields

updated_at (string, datetime)
the time that the object was last updated

created_at (string, datetime)
the time that this object was first created

sources (array)
URLs for sources relating to the object (required, minItems: 1)
Each element in sources is an object with the following keys:

url (string)
URL of resource used to collect information (required)

note (null, string)
note about what information this URL was used for (required)

2.8.3 Relationship to Bill

bill (object, null)
Related bill, votes will have a non-null bill object ifthey are related to a bill. Bills will have the following fields:
(required)
chamber (string, null)

bill’s chamber if vote was on a bill (and legislature is bicameral, otherwise null) (required)
Allowed values:

• upper

• lower

id (string, null)
bill’s internal id if bill was matched with an object in the database (required)

name (string)
bill name (e.g. HB 21) (required)

2.8.4 Vote Counts

vote_counts (**)
list of objects with vote_type and count properties (required)
Each element in vote_counts is an object with the following keys:

count (integer)
number of people voting this way (required)
(minimum value: 0)

vote_type (string)
(e.g. yes, no, not-voting) (required)
Allowed values:

• yes

• no

48 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

• absent

• abstain

• not voting

• paired

• excused

• other

roll_call (**)
list of individual legislator votes (required)
Each element in roll_call is an object with the following keys:

person (object)
person object representing the voter (required)
name (string)

person’s name as provided by the source (required)
id (string, null)

person’s internal id if they’ve been matched to an entity in the database (required)
vote_type (string)

(e.g. yes, no, not-voting) (required)
Allowed values:

• yes

• no

• absent

• abstain

• not voting

• paired

• excused

• other

2.9 Event Objects

Event objects have the following fields:

2.9.1 Basics

_type (string)
All events must have a _type field set to one of the entries in the enum below. (required)
Allowed values:

• event

name (string)
A simple name of the event, such as “Fiscal subcommittee hearing on pudding cups” (required)

2.9. Event Objects 49

Municipal Scrapers Contributor’s Guide Documentation

description (string)
A longer description describing the event. As an example, “Topics for discussion include this that and the other
thing. In addition, lunch will be served”. (required)

classification (string)
An event category, e.g. town hall. (required)

start_time (datetime)
Starting date / time of the event. This should be fully timezone qualified. (required)

timezone (string)
Time zone of the event. (required)

end_time (datetime, null)
Ending date / time of the event. This should be fully timezone qualified. (required)

all_day (boolean)
Whether the event is a full-day event. (required)

status (string)
String that denotes the status of the meeting. This is useful for showing the meeting is cancelled in a machine-
readable way. (required)
Allowed values:

• cancelled

• tentative

• confirmed

• passed

location (object, null)
Where the event will take place. (required)
url (string)

URL of the location, if applicable.

name (string)
name of the location, such as “City Hall, Boston, MA, USA”, or “Room E201, Dolan Science Center, 20700
North Park Blvd University Heights Ohio, 44118” (required)

coordinates (object, null)
coordinates where this event will take place. If the location hasn’t (or isn’t) geolocated or geocodable, than
this should be set to null. (required)
latitude (string)

latitude of the location, if any (required)
longitude (string)

longitude of the location, if any (required)

50 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

2.9.2 Linked Entities

media (array)
This “special” schema is used in two places in the Event schema, on the top level and inside the agenda item.
This is an optional component that may be omited entirely from a document. (required, minItems: 0)
Each element in media is an object with the following keys:

note (string)
Human-readable name of the media link, such as “Recording of the meeting” or “Discussion of construction
near the watershed” (required)

date (string)
Date of the recording

(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

offset (number, null)
Offset where the related part starts. This is optional and may be ommited entirely. (required)

links (array)
List of links to the same media item, each with a different MIME type. (required, minItems: 0)
Each element in links is an object with the following keys:

media_type (string)
IANA Media Type of the media, such as video/mp4 or audio/webm (required)

url (string)
URL where this media may be accessed (required)

text (string)
Text of the media

links (array)
Links related to the event that are not documents or items in the Agenda. This is filled with helpful links for the
event, such as a committee’s homepage, reference material or links to learn more about subjects related to the
event. (required, minItems: 0)
Each element in links is an object with the following keys:

note (string)
Human-readable name of the link. Something like “Historical precedent for popsicle procurement”

url (string)
A URL for a link about the event (required)

participants (array)
List of participants in the event. This includes committees invited, legislators chairing the event or people who
are attending. (required, minItems: 0)
Each element in participants is an object with the following keys:

note (string)
Note regarding the relationship, such as chair for the chair of a meeting. (required)

name (string)
Human-readable name of the participant. (required)

entity_type (string)
What type of entity is this? person may be used if the person is not a legislator, but attending the event,
such as an invited speaker or one who is offering testimony.

Allowed values:

2.9. Event Objects 51

Municipal Scrapers Contributor’s Guide Documentation

• organization

• person

entity_name (string)
Reconciled name of the participant. (required)

entity_id (string, null)
Reconciled ID of the participant. (required)

agenda (array)
Agenda of the event, if any. This contains information about the meeting’s agenda, such as bills to discuss or
people to present. (required, minItems: 0)
Each element in agenda is an object with the following keys:

description (string)
Human-readable string that represents this agenda item. A good example would be something like The
Committee will consider SB 2339, HB 100 (required)

classification (string)
An agenda item category.

order (string)
order of this item, useful for re-creating meeting minutes. This may be ommited entirely. It may also
optionally contains “dots” to denote nested agenda items, such as “1.1.2.1” or “2”, which may go on as
needed.

subjects (array)
List of related topics of this agenda item relates to. (minItems: 0)
Each element in subjects is of type (string)

notes (array)
List of notes taken during this agenda item, may be used to construct meeting minutes. (minItems: 0)
Each element in notes is of type (string)

`
related_entities (array)

Entities that relate to this agenda item, such as presenters, legislative instruments, or committees.
(required, minItems: 0)
Each element in related_entities is an object with the following keys:

note (string)
Human-readable string (if any) noting the relationship between the entity and the agenda item,
such as “Jeff will be presenting on the effects of too much cookie dough” (required)

name (string)
Human-readable string representing the entity, such as John Q. Smith. (required)

entity_type (string)
Type of the related object.

Allowed values:
• bill

• organization

• person

• vote_event

52 Chapter 2. Open Civic Data Formats

Municipal Scrapers Contributor’s Guide Documentation

entity_name (string)
Reconciled name of the entity. (required)

entity_id (string, null)
Reconciled ID of the entity. (required)

media (array)
This “special” schema is used in two places in the Event schema, on the top level and inside the
agenda item. This is an optional component that may be omited entirely from a document. (required,
minItems: 0)
Each element in media is an object with the following keys:

note (string)
Human-readable name of the media link, such as “Recording of the meeting” or “Discussion of
construction near the watershed” (required)

date (string)
Date of the recording

(must match format: ^[0-9]{4}(-[0-9]{2}){0,2}$)

offset (number, null)
Offset where the related part starts. This is optional and may be ommited entirely. (required)

links (array)
List of links to the same media item, each with a different MIME type. (required, minItems:
0)
Each element in links is an object with the following keys:

media_type (string)
IANA Media Type of the media, such as video/mp4 or audio/webm (required)

url (string)
URL where this media may be accessed (required)

text (string)
Text of the media

documents (array)
Links to related documents for the event. Usually, this includes things like pre-written testimony, spreadsheets
or a slide deck that a presenter will use. (required, minItems: 0)
Each element in documents is an object with the following keys:

note (string)
Human-readable name of the document. Something like “Fiscal Report” or “John Smith’s Slides”. (re-
quired)

date (string)
Document posting date (required)

media_type (string)
IANA Media Type of document (required)

url (string)
URL to document (required)

text (string)
Text of the document

links (array)
List of links to text for this document (pdf, html, etc.). (required, minItems: 0)

2.9. Event Objects 53

Municipal Scrapers Contributor’s Guide Documentation

Each element in links is an object with the following keys:

media_type (string)
IANA Media Type of document (required)

url (string)
URL to document (required)

text (string)
Text of the document

2.9.3 Common Fields

updated_at (string, datetime)
the time that this object was last updated.

created_at (string, datetime)
the time that this object was first created.

sources (array)
URLs for sources relating to the object (required, minItems: 1)
Each element in sources is an object with the following keys:

url (string)
URL of resource used to collect information (required)

note (null, string)
note about what information this URL was used for (required)

2.10 OCD Identifiers

Open Civic Data Identifiers (or OCD IDs) are a common Identifier format used in the Open Civic Data projects, in a
defined format, ripe for reuse with any legislative dataset.

2.10.1 Creating a new OCD ID

Consensus on IDs is needed for a few of the types, but other IDs may be issued without any concern at all. The following
is a helpful table of when it’s OK (and not OK) to create new IDs without reaching rough consensus.

OCD ID Type Can issue new ID
person Yes (UUID1)
organization Yes (UUID1)
division No (Needs to undergo a review and survey of entries at that geopolitical level)
jurisdiction No (needs to undergo a review to ensure we have consistent names for legislative bodies)

If you need to create a new ID that requires rough consensus, emailing the Open Civic Data mailing list with as much
detail regarding the situation as you can generally proves to be the best way to solicit feedback.

54 Chapter 2. Open Civic Data Formats

https://groups.google.com/forum/#!forum/open-civic-data

Municipal Scrapers Contributor’s Guide Documentation

2.10.2 General Format

OCD IDs have the general format of: ocd-${type}/${data}. Some valid types are division, jurisdiction, and
person. Each type has its own format (for the data half of the ID), and a brief overview can be found below.

2.10.3 Division IDs

Division IDs are one of the more common OpenCivic identifiers. Division IDs denote a particular geopolitical division.
Information regarding valid Division IDs can be found in OCDEP 2: Open Civic Data Divisions.

The general format is: ocd-division/country:<country_code>[/<type>:<type_id>]+. country_code must
be a valid ISO 3166-1 alpha-2 code for the country. type shall be the type of boundary (such as country, state,
city), while type_id shall be the unique ID for the entity at this level.

For more information on what exactly is correct in this format, please do take a look at OCDEP 2: Open Civic Data
Divisions.

2.10.4 Jurisdiction IDs

Jurisdiction IDs are based on the Division IDs, but have a slightly adjusted format. The type shall be set to
jurisdiction, and the data half of the ID shall have a trailing type, which matches the jurisdiction type.

The ID looks something like ocd-jurisdiction/country:us/state:ex/place:example/legislature.

This format isn’t fully formalized yet, so please take care when using these.

2.10.5 Person IDs, Org IDs

The valid types are person for a Person, and organization for an Organization.

Person and Org IDs contain a UUID for the data-part, created by pupa using uuid.uuid1.

An example of a valid OCD Person ID is ocd-person/ebaff054-05df-11e3-a53b-f0def1bd7298.

2.10. OCD Identifiers 55

http://docs.opencivicdata.org/en/latest/proposals/0002.html
http://docs.opencivicdata.org/en/latest/proposals/0002.html
http://docs.opencivicdata.org/en/latest/proposals/0002.html

Municipal Scrapers Contributor’s Guide Documentation

56 Chapter 2. Open Civic Data Formats

CHAPTER

THREE

STYLE GUIDELINES

3.1 General

3.1.1 Version Control

Code is managed in git. Changes should contain clear, descriptive English text describing the thought that went into
why you’re making the change, rather than describing what you changed.

In two weeks, It’s a lot more helpful to know why you changed foo to foo_with_bar, than read a commit message that
says change foo to be foo_with_bar.

The first line of a Git commit should be 50 chars or less, followed by a blank line, followed by a longer description of
the changeset (if required). The long description should contains lines that are all under 72 chars.

3.1.2 Line Length

Please try to keep line length under 80 chars wide, 100 characters should be considered the hard limit.

3.2 Open Civic Data Workflow

3.2.1 Submitting Changes

All changes should be submitted in the form of a Pull Request. Small changes, even ones that appear to be quite simple,
can often prove to cause issues down the line.

3.2.2 Suggested Git Branching Model

It’s strongly encouraged to use a sane Git branching model, one such model is:

Maintain two remotes:

upstream: Open Civic Data repo
origin: Fork of the repo

Always keep upstream/master, origin/master and refs/heads/master 100% ABSOLUTELY in sync. Before making a
new branch, or sending in a PR, give master a pull, and make sure things are all sync’d nicely.

Here’s an example of creating a new branch:

57

Municipal Scrapers Contributor’s Guide Documentation

git checkout master
git checkout -b paultag/bugfix/fix-typo-in-readme
git push -u origin paultag/bugfix/fix-typo-in-readme

It should go without saying that both paultag and bugfix should be changed to match your username, and the flavor of
branch is usually something like feature, or bugfix.

3.3 Python Code Guidelines

3.3.1 Python Version

Please use an up to date Python. All new development is Python 3.4+ only. All efforts to support older versions of
Python 3, or even Python 2 are on a purely best-effort basis, and large refactors of code to make it Python 2 compatable
will likely be rejected.

3.3.2 Code Standards

All code must follow PEP 8. You may check compliance with PEP8 by using the flake8 tool.

pip install flake8
flake8 .

Please address outstanding flake8 issues. Any test suites should also test code style.

3.3.3 Comments

Please add comments and descriptive docstrings to your code. Clearly, if the code doesn’t require them, that’s OK, but
comments can be quite helpful later on.

Sprinkle them around like sriracha.

3.3.4 Trailing Spaces

Please ensure that we don’t have any trailing spaces on any code lines or commit lines.

58 Chapter 3. Style Guidelines

https://www.python.org/dev/peps/pep-0008/

CHAPTER

FOUR

OPEN CIVIC DATA ENHANCEMENT PROPOSALS

4.1 OCDEP 1: Purpose and Guidelines

Created
2014-06-05

Author
James Turk

Status
Accepted

4.1.1 What is an OCDEP?

An OCDEP (Open Civic Data Enhancement Proposal) is a design document providing information to the Open Civic
Data community, or describing a new feature or process for Open Civic Data. OCDEPs provide concise technical
specifications of features, along with rationales.

We intend the proposal process to be the primary mechanism for proposing major new features, for collecting commu-
nity input on issues, and for documenting design decisions that have gone into Open Civic Data.

The concept of OCDEPs is a blatant copy of Python’s PEPs (http://www.python.org/dev/peps/) and Django’s use of
DEPs.

4.1.2 Rationale

We’re introducing the concept of OCDEPs in Open Civic Data in order to formalize the process of making significant
changes to the project.

Now that Open Civic Data is beginning to gain traction, we want to use this to avoid duplicate effort (by announcing
intentions) and to avoid developers from feeling like they’re building atop unstable ground.

While there will still be discussions that take place on the Google Group (https://groups.google.com/forum/#!forum/
open-civic-data) and in IRC, etc. it is expected that all major decisions will take place via the approval of an OCDEP.

59

http://www.python.org/dev/peps/
https://groups.google.com/forum/#!forum/open-civic-data
https://groups.google.com/forum/#!forum/open-civic-data

Municipal Scrapers Contributor’s Guide Documentation

4.1.3 When to write a proposal

Taking inspriration from Django’s DEP-0001 (https://github.com/django/deps/blob/master/deps/0001.rst) we too wish
to avoid introducing “bureaucracy for bureaucracy’s sake” and so have a relatively simple process reflecting the small
size of the project.

Proposals should be for significant additions or changes, especially those that would introduce some sort of compati-
bility issue for downstream users.

Examples of things that will fall under the proposal process:

• addition of a new type to Open Civic Data

• backwards incompatible changes to the API response format

• significant new functionality to the API (such as a new method, probably not a single new field in a response)

And things that will not require a proposal:

• purely technical changes, such as a backend refactor

• bugfixes

4.1.4 Submitting a Proposal

Our process is intentionally lean at the moment, as we try to get it up and running.

To submit a proposal, write a text document in the and submit it as a pull request to this GitHub repository (https:
//github.com/opencivicdata/docs.opencivicdata.org). Put it in the “proposals/drafts” directory of the repository and
give it a short name that describes the feature, e.g. “formal-xml-serialization.rst”.

The proposal format is reStructuredText, with “Created,” “Author” and “Status” fields near the top. For example, look
at the top of this document. “Status” should be “Draft” to start.

Beyond that, a proposal should include the following sections:

• Overview. A sentence or short paragraph describing the feature.

• Rationale. A few paragraphs describing why this feature is needed and what specific problem(s) it solves.

• Implementation. A technical description of how this feature will be implemented. This may or may not include
code snippets.

• Copyright. A statement placing the document in the public domain via the CC0 1.0 Universal License. For
example, see the bottom of this document.

Once you’ve written a proposal and submitted the pull request, post a message about it to the open-civic-data mailing
list (https://groups.google.com/forum/#!forum/open-civic-data).

At that point, the core Open Civic Data team will make sure it’s technically feasible, not spam, etc., assign it a number
and commit it to the repository. This doesn’t mean the feature will be implemented; it merely means the proposal is
officially an OCDEP.

60 Chapter 4. Open Civic Data Enhancement Proposals

https://github.com/django/deps/blob/master/deps/0001.rst
https://github.com/opencivicdata/docs.opencivicdata.org
https://github.com/opencivicdata/docs.opencivicdata.org
https://groups.google.com/forum/#!forum/open-civic-data

Municipal Scrapers Contributor’s Guide Documentation

4.1.5 Discussion and Acceptance of a Proposal

After something has been proposed, the merits will be discussed, the proposal edited, with a goal of reaching a general
consensus.

As a guiding principle these discussions should be as open as possible, suitable places include:

• Issues or pull requests on docs.opencivicdata.org issue tracker (tag these with the proposal tag).

• The Open Civic Data mailing list.

Note that final acceptance (or rejection) must be announced via the mailing list, and to include as many people as
possible it is recommended that questions needing broad consensus take place there, while GitHub is more suitable for
more isolated concerns and revisions.

At this point the proposal status will be changed (from Draft) to Accepted, Rejected, or Withdrawn.

If an agreement cannot be reached the core Open Civic Data team reserves the right to accept or reject the proposal.
Additionally, the core team may choose to set the status to Deferred, indicating that no decision has been made and the
issue can be revisited at some future point.

4.1.6 Implementation of a Proposal

Once a proposal has been marked as Accepted, implementation can begin (if it hasn’t already) and upon reasonable
completion the proposal will be marked as Final, indicating that future changes to this feature or component will require
an additional proposal.

4.1.7 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

4.2 OCDEP 2: Division Identifiers

Created
2014-06-06

Author
James Turk

Status
Accepted

4.2.1 Overview

Definition and procedures around defining Open Civic Data Divisions and their identifiers.

4.2. OCDEP 2: Division Identifiers 61

https://github.com/opencivicdata/docs.opencivicdata.org/issues
https://groups.google.com/forum/#!forum/open-civic-data
http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed

Municipal Scrapers Contributor’s Guide Documentation

Definitions

Division
A political geography such as a state, county, or congressional district, which may have multiple boundaries over
its lifetime. Types of divisions include, among others:

• Governmental jurisdiction - A division that a government has jurisdiction over. (e.g. North Carolina)

• Political district - A division that elects a representative to a legislature. (e.g. North Carolina Congressional
District 4)

• Service zone - An area to which a government provides a service. (e.g. Washington DC Police District
105)

Boundary
A geographical boundary, defined by a shapefile or a sequence of address ranges. (e.g. NC Congressional District
10 for the 113th Congress)

This document describes an identifier scheme for assigning globally unique identifiers to divisions. It does not intend
to describe any scheme for boundaries.

4.2.2 Rationale

Divisions can be seen as the smallest building block in the Open Civic Data ecosystem, Jurisdictions and Organizations
will exist within a Division and People are elected to represent a Division. As such, providing unique identifiers enables
collaboration across groups dealing with any of these types.

This proposal in fact predates the formal proposal process by a full year, originally part of the ocd-division-ids reposi-
tory, the ids are already in use by Sunlight, Google, Granicus, Open North, Open Elections, and several other projects.
(This document simply exists to formalize what was already decided.)

4.2.3 Implementation

Identifier Scheme

Identifiers are in the format ocd-division/country:<country_code>(/<type>:<type_id>)*

country_code
An ISO-3166-1 alpha-2 code.

type
The type of boundary. (e.g. country, state, town, city, cd, sldl, sldu)

• Valid characters are lowercase UTF-8 letters, hyphen (-), and underscore (_).

• Use existing types where possible.

type_id
An identifier that is locally unique to its scope.

• Valid characters are lowercase UTF-8 letters, numerals (0-9), period (.), hyphen (-), underscore (_), and
tilde (~). These characters match the unreserved characters in a URI RFC 3986 section 2.3.

• Characters must be converted to UTF-8.

• Uppercase characters must be converted to lowercase.

• Spaces must be converted to underscores.

• All invalid characters must be converted to tildes (~).

62 Chapter 4. Open Civic Data Enhancement Proposals

https://github.com/opencivicdata/ocd-division-ids
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://www.rfc-editor.org/rfc/rfc3986.txt

Municipal Scrapers Contributor’s Guide Documentation

• Leading zeros should be removed unless doing so changes the meaning of the identifier.

Assignment

• If possible, all divisions of the same type should be defined at the same time; for example, all state divisions
should be defined at once. Similarly, all cities in North Carolina should be defined at once, to avoid adopting a
scheme that produces collisions.

• When selecting a type_id, preference should be given to existing, common identifiers, like postal abbreviations
for US states. Numeric identifiers (such as US county FIPS codes) should be avoided if textual names are clear
and unambiguous; however, numeric identifiers may be appended to disambiguate a type_id.

• The set of types within each country should not grow unnecessarily. Each country maintainer should publish a
list of types for easy reference. The addition of a new type must be justified.

– For example: In the US, there are no clear-cut differences between cities, towns, villages, etc. Therefore,
the Census-recommended term place is used as the type of cities, etc.

Repository layout

The identifiers directory contains CSV files assigning all OCD identifiers:

• A single CSV file per country, in the format country-<country_code>.csv.

– The URLs of these files are stable.

• An optional directory per country, in the format country-<country_code>:

– A file hierarchy, in which CSV files describe parts of the top-level country CSV file.

– The URLs of these files are not stable.

The corrections directory contains CSV files that map incorrect OCD identifiers to correct OCD identifiers. Com-
mon errors include missing diacritics, differences in hyphenation and word order, use of Roman numerals, etc.

Identifiers

If a CSV file has no header row, the CSV is assumed to have two columns with the headers id and name.

If a CSV file has a header row, the first column name must be id.

Column names with special meaning are:

name
The name of the division.

sameAs
An OCD identifier which identifies the same division as this identifier. The row corresponding to the identifier
in this column must have a blank value in its sameAs column, i.e. there must be no daisy-chaining or circular
references.

sameAsNote
A note describing how or why the division has multiple identifiers.

validThrough
The date on which the division is no longer valid, in the format YYYY, YYYY-MM or YYYY-MM-DD. A division may
become invalid if, for example, a political district is abolished.

4.2. OCDEP 2: Division Identifiers 63

Municipal Scrapers Contributor’s Guide Documentation

validFrom
The date on which a division becomes valid, in the format YYYY, YYYY-MM or YYYY-MM-DD. A division may
become valid if, for example, a political district is created.

• There are no restrictions on other columns.

• An effort should be made to use descriptive CSV filenames.

Corrections

A correction CSV file must contain:

incorrectId
An incorrect OCD identifier, i.e. an OCD identifier that was never valid.

id
The corrected OCD identifier.

note
Free-text describing the error, e.g. “missing diacritics”.

Semantics

• All OCD identifiers are first-class. However, if it is necessary for a system for choose a “primary” or “preferred”
identifier for a division, it should use those identifiers with an empty sameAs column.

• The sameAs relationship is symmetric and transitive. The sameAs relationship is not true for all time; it is only
true in the present.

Governance

This project has an informal governance structure, led by the project’s early contributors and informed by the Open
Civic Data Google Group. Responsibility for a country’s identifiers may be assigned to country-specific organizations.

Examples

United States
ocd-division/country:us

North Carolina
ocd-division/country:us/state:nc

North Carolina 2nd Congressional District
ocd-division/country:us/state:nc/cd:2

North Carolina State Lower Legislative District 1
ocd-division/country:us/state:nc/sldl:1

Wake County, North Carolina
ocd-division/country:us/state:nc/county:wake

Cary, North Carolina (note that despite being within Wake County this is not indicated due to not being an
identifying feature)

ocd-division/country:us/state:nc/place:cary

Kildaire Farms Homeowners Association, Cary, North Carolina
ocd-division/country:us/state:nc/place:cary/hoa:kildaire_farms

64 Chapter 4. Open Civic Data Enhancement Proposals

https://groups.google.com/forum/#!forum/open-civic-data
https://groups.google.com/forum/#!forum/open-civic-data

Municipal Scrapers Contributor’s Guide Documentation

Washington DC, Ward 8
ocd-division/country:us/district:dc/ward:8

Washington DC, ANC 4A
ocd-division/country:us/district:dc/anc:4a

Washington DC, ANC 4A, section 08 (note: this is a strict subset of the ANC for purposes of representation)
ocd-division/country:us/district:dc/anc:4a/section:8

New York City, City Council District 36 (happens to be in Brooklyn- but not significant to include in id)
ocd-division/country:us/state:ny/place:new_york/council_district:36

Canadian Federal Electoral District 13004 aka Fundy Royal (known as Royal from 1914-1966, Fundy-Royal
from 1966-2003, and Fundy from 2003-2004- hence the use of a numeric identifier assigned by the government)

ocd-division/country:ca/ed:13004

4.2.4 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

4.3 OCDEP 3: Jurisdictions

Created
2014-06-12

Author
James Turk

Status
Accepted

4.3.1 Overview

Definition of the Open Civic Data Jurisdiction type.

4.3.2 Rationale

A Jurisdiction represents a logical unit of governance.

Examples would include: the United States Federal Government, the Government of the District of Columbia, the
Lexington-Fayette Urban County Government, or the Wake County Public School System.

The following would not be considered Jurisdictions:

• Bethesda, MD - Bethesda is a Census Designated Place and as such has no formal government.

• North Carolina’s General Assembly - The General Assembly is part of the state government, and would be an
Organization within North Carolina’s government.

Additionally, Open Civic Data Jurisdictions should not be confused with the concept of judicial jurisdiction, which is
an altogether different issue that we do not attempt to address.

All entities within the Open Civic Data ecosystem are related (directly or indirectly) to a Jurisdiction, and so, along
with Divisions (which Jurisdictions themselves depend upon), Jurisdictions can be viewed as one of the foundational
pieces of Open Civic Data.

4.3. OCDEP 3: Jurisdictions 65

http://en.wikipedia.org/wiki/Fundy_Royal
http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed
http://en.wikipedia.org/wiki/Census-designated_place

Municipal Scrapers Contributor’s Guide Documentation

4.3.3 Implementation

The Jurisdiction type has the following properties:

id
An ID in the format ocd-jurisdiction/country:<country_code>(/<type>:<type_id>)*/
<classification> (where the first part of the ID is identical to the related Division.)

The following pattern should be used create a jurisdiction_id given a division_id and classification:

jurisdiction_id = (division_id.replace('ocd-division', 'ocd-jurisdiction') +
'/' + classification)

name
The common name of the Jurisdiction, such as ‘Wyoming’ or ‘Hope County School System’

url
The primary website of the Jurisdiction.

classification
The type of jurisdiction being defined, current options are:

• government - A combined government for a city, county, state, or country where the legislature and execu-
tive (and possibly judicial) branches form a cohesive whole that should be considered as one. (The United
States is one such example.)

• legislature - A legislature in a region in which there is no unified legislative-executive government. An
example would be a Parliament in Westminster systems.

• executive - An executive branch in a region in which there is no unified legislative-executive government.
An example would be the cabinet in Westminster systems.

• school - A school system that is independent from a city/county government.

• park - An independent park district.

• sewer - An independent sewer district.

• forest - An independent forest preserve district.

• transit_authority - An independent transit district or authority.

division, division_id
A link to an Open Civic Data division (or the object itself embedded within the Jurisdiction).

legislative_sessions
A list of sub-objects representing times when the jurisdiction’s legislature has met (if one exists).

identifier
An identifier that uniquely identifies the session within the context of the Jurisdiction. (e.g. 2009)

name
The canonical name of the session. (e.g. 2009 Regular Session)

classification
The type of session, choices are:

• primary - A regularly scheduled session.

• special - Any session that is not regularly scheduled.

start_date
Start date of session in YYYY-MM-DD format (may be approximate by leaving off -MM-DD or -DD
portion).

66 Chapter 4. Open Civic Data Enhancement Proposals

http://en.wikipedia.org/wiki/Westminster_system
http://en.wikipedia.org/wiki/Westminster_system

Municipal Scrapers Contributor’s Guide Documentation

end_date
End date of session in YYYY-MM-DD format (may be approximate by leaving off -MM-DD or -DD por-
tion).

feature_flags
A list of features that are present for data in this jurisdiction. The definition of these flags is currently left up to
individual implementors.

4.3.4 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

4.4 OCDEP 4: Events

Created
2014-06-09

Author
Paul Tagliamonte

Status
Accepted

4.4.1 Overview

Definition of Open Civic Data Events.

Definitions

Event
Something happening at a given time and location, past, present or future.

Media
Audio and/or Video recordings.

Agenda
Points to be discussed at the event, as defined in the Agenda section below.

4.4.2 Rationale

A core part of the democratic process is ensuring that citizens have representation and a say in how the government
operates. One important way in which this happens is through hearings and opportunities for public testimony. As
such, Open Civic Data Events need to be able to store data such as hearings, and provide structure to represent this
aspect of government.

4.4. OCDEP 4: Events 67

http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed

Municipal Scrapers Contributor’s Guide Documentation

4.4.3 Implementation

Core Fields

name
Name of the event, examples include “Fiscal committee meeting on April 10th” or “Appropriations - S/C on
Article II”

classification
Classification of the event. Current values (which may be expanded) are committee-meeting and hearing.

start_time
Starting time of the event. This field is serialized as an ISO 8601 datetime string, normalized to UTC, and must
be fully datetime aware. ISO 8601 defines times expressed in UTC with a special UTC designator (“Z”) as the
timezone.

timezone
This must always be set to the timezone in which the event is held. This also aids in display, since you may
always know what the local time of the event is.

Optional Fields

agenda
List of agenda items as defined in the Agenda Items section below.

description
Description of the Event.

location
Location object, as defined in the Location section below.

all_day
Boolean value set to boolean True if the event is an all-day event, otherwise it must be set to the boolean value
False.

end_time
Ending time of the event. This field is serialized as an ISO 8601 datetime string, normalized to UTC, and must
be fully datetime aware. ISO 8601 defines times expressed in UTC with a special UTC designator (“Z”) as the
timezone.

status
Status of the event, values are currently:

• cancelled for a cancelled event

• tentative for an event which is scheduled but not confirmed.

• confirmed for an event which is confirmed as happening.

• passed for a past event.

links
Links associated with the event, as defined in the Links section below.

participants
Participants associated with the event, as defined in the Participants section below.

documents
List of documents associated with the Event, as described in the Documents section below.

68 Chapter 4. Open Civic Data Enhancement Proposals

Municipal Scrapers Contributor’s Guide Documentation

media
List of media objects, as defined in the Media section below.

Location

name
Name of the location, such as “City Hall, Boston, MA, USA”, or “221B Baker Street”.

note
Optional human-readable note to help with getting to the meeting place, such as “The meeting will take place at
the Minority Whip’s desk on the floor”

url
Optional URI of the venue, such as a webpage.

coordinates
Object to store the exact coordinates of the venue. This object has two keys, latitude and longitude.

Participants

name
Name of the participant

id
Open Civic Data ID of the participants

type
Type of the participant, either person or organization.

note
Human-readable note regarding the relationship

Agenda Items

Agenda items are the list of topics to be discussed at the meeting, as well as metadata related to the topic or proceeding.

Required Fields

description
Description of the agenda item. Examples include “Consideration of SB 2339, HB 100” or “John Q. Public will
give testimony”.

Optional Fields

related_entities
List of objects as defined in the Related Entities section below.

media
List of media objects, as defined in the Media section below.

documents
List of documents associated with the Agenda Item, as described in the Documents section below.

4.4. OCDEP 4: Events 69

Municipal Scrapers Contributor’s Guide Documentation

notes
List of strings, which store any notes taken during the event while discussing this item.

subjects
List of subjects (stored as strings) of this item.

Related Entities

entity_type
Type of the related entity, such as bill, person, or organization.

id
Open Civic Data ID of the entity.

name
Human-readable name of this entity, such as “John Q. Smith”, or “HB 101”.

note
Optional note regarding the relation between this entity and the agenda item, such as “Jeff will be presenting on
the effects of the watershed contstruction”.

Documents

Related documents to the event, things like pre-written testimony, spreadsheets or a slide deck should be related here.

note
Relationship of the document to the event. Examples include “Fiscal Report” or “John Smith’s slides”

url
URI where the content may be found.

media_type
Full IANA media type of the remote content.

Links

Links are a list of related URLs which are not documents, media or agenda items. Examples include a committee’s
homepage, reference material or links to learn more about subjects related to the event.

note
Human-readable name of the link.

url
URI pointing to the resource referenced.

Media

Media, most often recordings of the event, are extremely useful for those who wish to review what was dicsussed at a
meeting, and provides a record of resolutions to issues discussed.

70 Chapter 4. Open Civic Data Enhancement Proposals

Municipal Scrapers Contributor’s Guide Documentation

Required Fields

name
A required string that describes the particular media link. Examples include “Discussion of the contstruction
near the watershed” or “Fiscal committee meeting on April 9th.”

type
What kind of media this is, as defined below in the section Defined Types.

links
List of objects which contain two keys, url and media_type. url is a fully qualified URI to the media.
media_type is the full IANA media type of the content at the URI.

Optional Fields

date
A string in YYYY-MM-DD format which stores the date of the recording.

offset
Integer offset into the media to use as a starting point. This is defined as a nonzero positive integer, the value of
which is the number of seconds into the recording to skip to. Implementations should use this (if present) as the
starting point when playing back video.

Defined Types

recording
A recording of the event

testimony
recorded testimony, either pre-recorded and submitted, or a recording made at the event.

Examples

Example:

{
"_id": "ocd-event/146e36d8-d243-11e3-ad6e-f0def1bd7298",
"_type": "event",
"agenda": [

{
"description": "Opening remarks from Speaker Andy Tobin",
"order": 1,
"subjects": [],
"media": [],
"notes": [],
"related_entities": [

{
"id": "ocd-person/072c3c11-cd8c-4544-9ab1-b60486e1832e",
"name": "Andy Tobin",
"note": "speaker"

}
]

(continues on next page)

4.4. OCDEP 4: Events 71

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

},
{

"description": "Presentation by Director Henry Darwin, Arizona Department of␣
→˓Environmental Quality, regarding the Environmental Protection Agency (EPA) Clean Power␣
→˓Plan proposed rule",

"order": 2,
"subjects": ["epa", "green energy", "environmental issues"],
"media": [],
"notes": [],
"related_entities": [

{
"id": "ocd-person/a284a515-32b2-4338-a38d-1938a4ac9f8f",
"name": "Henry Darwin",
"note": null

},
{

"id": "ocd-organization/684139f7-b5a5-4702-9a92-2be976b29eef",
"name": "Environmental Protection Agency (EPA)",
"note": null

}
]

},
{

"description": "Public Testimony",
"order": 3,
"subjects": [],
"media": [],
"notes": [],
"related_entities": []

},
],
"all_day": false,
"description": null,
"documents": [

{
"note": "Agenda",
"url": "http://committee.example.com/agenda.pdf",
"media_type": "application/pdf",

}
],
"end": null,
"extras": {},
"links": [

{
"name": "EPA Website",
"url": "http://www.epa.gov/"

}
],
"location": {

"coordinates": {
"latitude": "33.448040",
"longitude": "-112.097379"

(continues on next page)

72 Chapter 4. Open Civic Data Enhancement Proposals

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

},
"name": "State Legislative Building",
"note": null

},
"media": [

{
"date": "2014-04-12",
"links": [

{
"media_type": "video/mp4",
"url": "http://example.com/video.mp4"

},
{

"media_type": "video/webm",
"url": "http://example.com/video.webm"

}
],
"name": "Recording of the meeting",
"offset": 19,
"type": "recording"

}
],
"name": "Meeting of the Committee on Energy",
"participants": [

{
"id": "ocd-organization/487b972c-4aa6-40e7-b355-0d73580e06e8",
"name": "Committee on Energy",
"note": "Host Committee"

},
{

"id": "ocd-person/072c3c11-cd8c-4544-9ab1-b60486e1832e",
"name": "Andy Tobin",
"note": "Speaker"

}
],
"sources": [

{
"note": "scraped source",
"url": "http://example.com/events"

}
],
"status": "passed",
"type": "event",
"start_date": 1408932805.0

}

4.4. OCDEP 4: Events 73

Municipal Scrapers Contributor’s Guide Documentation

4.4.4 Defined Schema

Schema:

media_schema = {
"items": {

"properties": {
"name": { "type": "string" },
"type": { "type": "string" },
"date": fuzzy_date_blank,
"offset": { "type": ["number", "null"] },
"links": {

"items": {
"properties": {

"media_type": { "type": "string", "blank": True },
"url": { "type": "string" },

},
"type": "object"

},
"type": "array"

},
},
"type": "object"

},
"type": "array"

}

schema = {
"properties": {

"name": { "type": "string" },
"start_time": { "type": "datetime", },
"timezone": { "type": "string" },
"all_day": { "type": "boolean" },
"end_time": { "type": ["datetime", "null"] },
"status": {

"type": "string", "blank": True,
"enum": ["cancelled", "tentative", "confirmed", "passed"],

},
"classification": { "type": "string" }, # TODO: enum
"description": { "type": "string", "blank": True, },

"location": {
"type": "object",
"properties": {

"name": { "type": "string", },

"note": {
"type": "string", "blank": True,

},

"url": {
"required": False,

(continues on next page)

74 Chapter 4. Open Civic Data Enhancement Proposals

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

"type": "string",
},

"coordinates": {
"type": ["object", "null"],
"properties": {

"latitude": {
"type": "string",

},

"longitude": {
"type": "string",

}
}

},
},

},

"media": media_schema,

"documents": {
"items": {

"properties": {
"note": { "type": "string", },
"url": { "type": "string", },
"media_type": { "type": "string", },

},
"type": "object"

},
"type": "array"

},

"links": {
"items": {

"properties": {

"note": {
"type": "string",
"blank": True,

},

"url": {
"format": "uri",
"type": "string"

}
},
"type": "object"

},
"type": "array"

},

"participants": {

(continues on next page)

4.4. OCDEP 4: Events 75

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

"items": {
"properties": {

"name": {
"type": "string",

},

"id": {
"type": ["string", "null"],

},

"type": {
"enum": ["organization", "person"],
"type": "string",

},

"note": {
"type": "string",

},

},
"type": "object"

},
"type": "array"

},

"agenda": {
"items": {

"properties": {
"description": { "type": "string", },

"order": {
"type": ["string", "null"],

},

"subjects": {
"items": {"type": "string"},
"type": "array"

},

"media": media_schema,

"notes": {
"items": {

"type": "string",
},
"type": "array",
"minItems": 0,

},

"related_entities": {
"items": {

(continues on next page)

76 Chapter 4. Open Civic Data Enhancement Proposals

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

"properties": {
"entity_type": {

"type": "string",
},

"id": {
"type": ["string", "null"],

},

"name": {
"type": "string",

},

"note": {
"type": ["string", "null"],

},
},
"type": "object",

},
"minItems": 0,
"type": "array",

},
},
"type": "object"

},
"minItems": 0,
"type": "array"

},
"sources": sources,
"extras": extras,

},
"type": "object"

}

4.4.5 Further Reading

Many ideas here were based on the work in Open States Schema.

4.4. OCDEP 4: Events 77

https://github.com/sunlightlabs/billy/blob/master/billy/schemas/event.json

Municipal Scrapers Contributor’s Guide Documentation

4.4.6 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

4.5 OCDEP 5: People, Organizations, Posts, and Memberships

Created
2014-06-12

Author
James Turk

Status
Accepted

4.5.1 Overview

Adoption of Popolo types for the Open Civic Data Person, Organization, Post, and Membership types.

Definitions

Person
An individual that has served in a political office.

Organization
A group of people, typically in a legislative or rule-making context.

Post
A position in an organization that exists independently of the person holding it.

Membership
A relationship between a Person and an Organization, possibly including a Post.

4.5.2 Rationale

At the core of the Open Civic Data mission is helping people discover who represents them and the structure of their
government. People, Posts, Organizations, and Memberships are the means to describing that structure.

Furthermore, we have adopted (with minor differences) the Popolo schemas for these objects in the aim of being
interoperable with a wide range of civic software that is being built, and due to the technical merits and completeness
of the specification.

78 Chapter 4. Open Civic Data Enhancement Proposals

http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed
http://popoloproject.com/

Municipal Scrapers Contributor’s Guide Documentation

4.5.3 Implementation

To avoid duplicating the entire Popolo specification, this proposal only aims to highlight the differences (omitted or
added fields) between Popolo and the Open Civic Data implementation.

Person

The basis for the Open Civic Data Person object is the Popolo Person.

Omitted Fields

Several fields have been omitted:

additional_name, honorific_prefix, honorific_suffix, patronymic_name
Due to the inherent fragile nature of trying to segment names, all name fields other than name, sort_name,
family_name, given_name, and other_names are omitted to avoid implying that they can be relied upon.

email
Considered redundant with using an entry in Person.contact_details with type email.

Additional Fields

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

Organization

The basis for the Open Civic Data Organization object is the Popolo Organization.

Omitted Fields

area, area_id
Open Civic Data does not make use of the Popolo Area type here, instead favoring the concept of Jurisdiction
as described in OCDEP 3: Jurisdictions. (See Areas, Divisions, and Jurisdictions)

Additional Fields

jurisdiction, jurisdiction_id
An organization exists as part of a Jurisdiction as described in OCDEP 3: Jurisdictions. (See Areas, Divi-
sions, and Jurisdictions)

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

4.5. OCDEP 5: People, Organizations, Posts, and Memberships 79

http://popoloproject.com/specs/person.html
http://popoloproject.com/specs/organization.html

Municipal Scrapers Contributor’s Guide Documentation

Post

The basis for the Open Civic Data Post object is the Popolo Post.

Omitted Fields

other_label
This field was added to Popolo after our adoption, and we have not yet found a need to add it.

Additional Fields

division, division_id
An post may have an associated Division, which is a synonym of Popolo’s Area. (See Areas, Divisions, and
Jurisdictions)

These fields are synonymous with area and area_id. It is strongly suggested that both exist for compatibility
reasons.

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

Membership

The basis for the Open Civic Data Membership object is the Popolo Membership.

Omitted Fields

area, area_id
Memberships are not used to relate to defined areas/divisions, this must be done through a Post.

member, member_id
We do not support Organization-Organization memberships, and therefore use the more specific person and
person_id fields

Additional Fields

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

80 Chapter 4. Open Civic Data Enhancement Proposals

http://popoloproject.com/specs/post.html
http://popoloproject.com/specs/membership.html

Municipal Scrapers Contributor’s Guide Documentation

Areas, Divisions, and Jurisdictions

Two main differences have emerged between our handling of political areas and that of Popolo:

The first difference is the use of Division instead of Area on Post. Division in Open Civic Data predates Area’s
inclusion in Popolo, but the two are now essentially synonymous. For compatibility reasons Open Civic Data will
continue to use the term Division, but for compatibility with other Popolo-based systems area and area_id should
be present in any API.

Additionally, Open Civic Data uses the concept of Jurisdictions, which represent entities with authority over a given
area. (For more detail on Jurisdictions see OCDEP 3: Jurisdictions.)

Due to the presence of Jurisdictions, a decision was made to not use area & area_id on Organizations, instead
Organization objects are linked instead to a Jurisdiction. A link to Division (a synonym for Area does exist
on Jurisdiction so it is still possible to get the Area represented by an Organization).

4.5.4 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

4.6 OCDEP 6: Bills

Created
2014-06-16

Author
James Turk

Status
Accepted

4.6.1 Overview

Definition of Open Civic Data Bill schema.

4.6.2 Rationale

Bills are the primary artifact of legislatures, proposals to modify or create laws. Open Civic Data Bills are the repre-
sentation of this concept, which may sometimes be known by other names such as Proposal, Resolution, or Measure.

4.6.3 Implementation

id
A unique ID in the format ocd-bill/{uuid}.

legislative_session
A reference to a legislative_session from the relevant Jurisdiction (see OCDEP 3: Jurisdictions for
details). This must contain the name attribute at minimum, but may contain any valid object that is found in the
Jurisdiction.legislative_session object.

4.6. OCDEP 6: Bills 81

http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed

Municipal Scrapers Contributor’s Guide Documentation

identifier
A name for the bill, such as ‘HB 1’ or ‘2117’.

title
The current title of the bill, such as ‘The Patient Protection and Affordable Care Act’.

from_organization, from_organization_id
optional The organization that the bill was originally introduced in. In the US this would be the organization
representing the House if it were a House bill or resolution, and the Senate if it were a Senate bill.

This field can be omitted if it is not known or there is not a single chamber of introduction (such as a Joint
Resolution).

classification
A list of classifications for this bill, suggested values would be things like ‘bill’, ‘resolution’, ‘constitutional
amendment’, etc.

subject
optional A curated list of subject areas that this bill is a part of.

abstracts
A list of objects representing available abstracts (sometimes called summaries) for the bill, each with the follow-
ing fields:

abstract
The text of the abstract.

note
optional A note about the origin of the summary, such as “Republican Caucus Summary” or “Library of
Congress Summary”

other_titles
A list of objects representing alternate titles for the bill.

title
The text of an alternate title that someone might use to refer to the bill, an example might be “Obamacare”
for the Affordable Care Act.

note
optional A note describing the origin of the title.

other_identifiers
A list of objects representing alternate identifiers for the bill.

Also note that this is to refer to bills that have multiple names, such as in Tennessee where bills are given a
House and Senate number but have shared history. In states where there are two related bills with distinct parallel
histories, a second Bill object should be created and the related_bill property (described below) should be
used.

identifier
The alternate identifier (e.g. HB 7)

note
optional A note describing the reason for the alternate name.

scheme
optional If the identifier belongs to a 3rd-party site (such as OpenStates.org assigned bill ids) it must provide
a scheme, scheme should be omitted if it is an identifier from the primary source.

actions
A list of objects representing individual actions that take place on a bill, comprising the legislative history of the
proposal in question. Actions consist of the following properties:

82 Chapter 4. Open Civic Data Enhancement Proposals

Municipal Scrapers Contributor’s Guide Documentation

organization, organization_id
The organization that this action took place within.

description
Description of the action.

date
The date the action occurred in YYYY-MM-DD format. (can be partial by omitting -MM-DD or -DD
component).

classification
A list of classifications for this actions, suggested values would be things like ‘passage’, ‘introduction’, etc.

related_entities
A list of all related entities (such as legislators mentioned by name in the action). Each entity has the
following fields:

name
The upstream-given name of this related entity.

entity_type
‘organization’ or ‘person’ - the type of entity that is related

organization, organization_id
If the entity_type is ‘organization’ and the entity is resolved, will be the organization that is related.

person, person_id
If the entity_type is ‘person’ and the entity is resolved, will be the person that is related.

related_bills
List of all related (but distinct) bills. An example might be a bill that was introduced in a prior session (and thus
is similar but has different legislative history).

An array of entities with the following fields:

identifier
The identifier of the related bill, such as SB 22.

legislative_session
A link to the legislative session the related bill is from.

relation_type
Description of the relation between the two bills, can be:

• companion - A companion bill introduced in the same session in opposite chamber.

• prior-session - Same bill as introduced in a prior session.

• replaced-by - A bill that was replaced by another bill.

• replaces - A bill that supercedes another bill.

related_bill, related_bill_id
If the related bill exists in the data set, a link to the complete record for the bill. (can be null if no such
link has yet been made)

sponsorships
A list of all sponsoring people and organizations.

primary
A boolean that is true if the sponsor can be considered ‘primary.’ The exact meaning of this is jurisdiction-
dependent.

4.6. OCDEP 6: Bills 83

Municipal Scrapers Contributor’s Guide Documentation

Note: this can often be derived from classification, but can often be highly jurisdiction dependent (among
US states for example the terms author, sponsor, cosponsor, and coauthor can mean quite different things).
Because of this, and the frequent need to indicate which author(s) should be displayed in a short list of
sponsors when the full list might be half of the legislature or more, we’ve chosen to include this field.

classification
The classification of the sponsor, such as ‘cosponsor’ or ‘author’.

name
The upstream-given name of this sponsor.

entity_type
‘organization’ or ‘person’ - the type of the sponsor.

organization, organization_id
If the entity_type is ‘organization’ and the entity is resolved, will be the sponsoring organization.

person, person_id
If the entity_type is ‘person’ and the entity is resolved, will be the sponsoring individual.

versions
All versions of the bill.

note
Note describing the version (e.g. ‘Introduced’, ‘Engrossed’, etc.)

date
The date the version was published in YYYY-MM-DD format (partial dates are acceptable).

links
Links to ‘available forms’ of the version. Each version can be available in multiple forms such as PDF and
HTML. (For those familiar with DCAT this is the same as the Distribution class.) Has the following
properties:

url
URL of the link.

media_type
The media type of the link.

documents
All documents related to the bill with the exception of versions (which are part of the above versions).

note
Note describing the document’s relation to the bill (e.g. ‘Fiscal Note’, ‘Committee Report’, etc.)

date
The date the document was published in YYYY-MM-DD format (partial dates are acceptable).

links
Links to ‘available forms’ of the document. Each document can be available in multiple forms such as PDF
and HTML. (For those familiar with DCAT this is the same as the Distribution class.) Has the following
properties:

url
URL of the link.

media_type
The media type of the link.

created_at
Time that this object was created at in the system, not to be confused with the date of introduction.

84 Chapter 4. Open Civic Data Enhancement Proposals

http://en.wikipedia.org/wiki/Internet_media_type
http://en.wikipedia.org/wiki/Internet_media_type

Municipal Scrapers Contributor’s Guide Documentation

updated_at
Time that this object was last updated in the system, not to be confused with the last action.

sources
List of sources used in assembling this object. Has the following properties:

url
URL of the resource.

note
optional Description of what this source was used for.

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

4.6.4 Further Reading

Many ideas here were based on the work in Open States.

4.6.5 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

4.7 OCDEP 7: Votes

Created
2014-06-18

Author
James Turk

Status
Accepted

4.7.1 Overview

Definition of the Open Civic Data vote types.

(Based in part on Popolo types for the Open Civic Data Vote and VoteEvent).

4.7.2 Rationale

Determining how legislators have voted on specific proposals is a vital component to creating legislative accountability.
The VoteEvent type and its related subtypes exist to enable the recording of votes (meaning the outcome of a proposal
as well as the individual positions of legislators).

An attempt has been made to reconcile our vote types (originally based in Open States work) with the schemas put
forward by the Popolo specification.

4.7. OCDEP 7: Votes 85

https://github.com/sunlightlabs/billy/blob/master/billy/schemas/bill.json
http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed
http://popoloproject.com/
http://popoloproject.com/specs/vote-event.html

Municipal Scrapers Contributor’s Guide Documentation

4.7.3 Implementation

Because at the time of writing (June 2014) the Popolo vote specification was still somewhat in a state of flux we’ve
included pieces of the specification here for consistency.

VoteEvent

Because the term ‘vote’ can mean multiple things, Popolo makes use of the term VoteEvent to describe the actual
event of a legislative vote taking place and the term Vote for a legislator’s vote in a given VoteEvent. We generally use
that terminology here, with the exception that the recommended API endpoint and ID scheme for VoteEvent objects
will use vote and ocd-vote/{{uuid}} for VoteEvent.

Each VoteEvent has the following fields:

id
Open Civic Data-style id, in the format ocd-vote/{{uuid}}.

identifier
optional Upstream identifier if one exists, such as ‘Roll Call #2372’.

motion
The motion being voted upon. Represented as an object with text and classification elements.

text is a required string describing the motion.

classification is a list of classifiers (e.g. ‘bill-passage’) and can also be an empty list.

In Popolo there is a Motion class that has additional properties, only text and classification are supported at this
time.

start_date
Time at which the vote begins. In flexible YYYY-MM-DD format.

end_date
optional Time at which the vote ends, should such a time exist. In flexible YYYY-MM-DD format.

result
The outcome of the vote, can be ‘pass’ or ‘fail’.

organization, organization_id
The Organization in which the VoteEvent took place.

legislative_session, legislative_session_id
Reference to the Jurisdiction.legislative_session the VoteEvent takes place in.

bill, bill_id
optional Reference to the Bill object the VoteEvent is related to (if the vote in question is on a bill).

votes
A list of objects representing individual legislator’s votes. (Popolo refers to these as Vote).

This list may not be present if the individual voters are not known, for example in the case of a voice vote.

Each element has the following properties:

voter_name
The name of the voter as it appears on the primary source. (Useful for when it cannot yet be resolved to a
specific individual.)

voter, voter_id
A reference to the Person responsible for the vote. (may be null if the voter_name has not been resolved
to an individual.)

86 Chapter 4. Open Civic Data Enhancement Proposals

http://popoloproject.com/specs/motion.html
http://popoloproject.com/specs/vote.html

Municipal Scrapers Contributor’s Guide Documentation

option
The opinion of the voter casting this Vote. See Voting Options.

note
A freeform text field describing any additional information about the vote. An example might be an excuse
if the option is ‘excused’.

counts
A list of count objects (what Popolo calls Count).

These represent the total number of individuals voting a particular way. Each has two properties:

option
The voting option being tallied. See Voting Options.

value
The total number of individuals voting this way. (Should match the sum of the voteswith the same option
in almost every case, assuming they are present.)

created_at
Time that this object was created at in the system, not to be confused with the start_date.

updated_at
Time that this object was last updated in the system.

sources
List of sources used in assembling this object. Has the following properties:

url
URL of the resource.

note
optional Description of what this source was used for.

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

Voting Options

The possible values of counts.option and votes.option are as follows:

• yes

• no

• abstain

• absent

• not voting

• paired

Additional values will be added in the future as needed.

4.7. OCDEP 7: Votes 87

http://popoloproject.com/specs/count.html

Municipal Scrapers Contributor’s Guide Documentation

Differences from Popolo

• VoteEvent has an extra attribute which is not defined in Popolo.

• Vote objects (within VoteEvent.votes) have a voter_name property that is used for when a voter cannot be
linked to a known Person. Additionally, voter can only link to a Person.

• Vote objects also do not currently support the group, role, weight, or pair properties. There is a chance
these will be adopted in the future after their use is necessary.

• Vote objects have a note property that is not present in Popolo’s specification.

• Motion objects from Popolo are represented simply as motion.text, this is future-proof should we ever choose
to adopt additional Motion properties.

4.7.4 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

4.8 OCDEP 8: Division Identifier Governance

Created
2017-10-26

Author
Donny Bridges

Status
Accepted

4.8.1 Overview

A formalized governance model for the creation, acceptance, and upkeep of Open Civic Data Division Identifiers
(OCDIDs).

4.8.2 Rationale

Recently, a number of civic data organizations, tech companies, and US state governments have expressed interest in
taking a greater role in the creation, upkeep, and wider adoption of OCDIDs. Currently, the governance structure for
division IDs as defined in OCDEP2 is “informal. . . led by the project’s early contributors and informed by the Open
Civic Data Google Group.” Increased adoption and interest makes this informality untenable for reasons including:

• Bottlenecks arising when large amounts of new identifiers are proposed but only a few people have permission
to review and approve pull requests.

• Subject-matter experts and organizations that have extensive experience working with OCDIDs are willing to
take greater responsibility, but currently do not have a formal path for doing so.

• Government entities and other local experts who may wish to contribute to the OCDID repository do not have a
clear idea of how the process for contribution works, making it more difficult for them to justify contributing.

88 Chapter 4. Open Civic Data Enhancement Proposals

http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed

Municipal Scrapers Contributor’s Guide Documentation

We propose to formalize this structure in order to relieve some of the burden on those currently responsible for main-
taining the repository, as well as allowing those whose work depends on OCDIDs to have more direct control on their
upkeep.

4.8.3 Implementation

Roles & Responsibilities

User

Anyone using OCDIDs may contribute through group discussion, reporting issues, or assisting with subject-matter
expertise. The agreed upon communication channels for each country’s community will be publicly displayed in the
Open Civic Data documentation.

Contributor

Any individual or organization user may become a contributor by submitting a pull request adding, correcting,
or aliasing jurisdictional OCDIDs. First time contributors will be advised via a CONTRIBUTING.RST to consult
with an existing committer from their country before submitting their first PR.

Committer

Committers have the ability to approve and commit pull requests from contributors and other committers within
their geographic scope.

• Unless otherwise specified, committers will be approved for and by their country of residence/expertise. All
responsibilities and privileges associated with being a committer are limited to issues within that country’s
community.

• A small subset of global committers will be established, for the sake of international coordination, whose
participation may be requested in all votes, regardless of country. These global committers will not be subject
to the responsibilities of communities outside their own country unless otherwise specified.

• Government officials from sub-country jurisdictions who wish to become committers may choose to limit their
scope to their particular jurisdiction, and thus would not be expected to participate in wider conversations or
actions.

• Having committer authority in a country does not entitle an individual to any authority outside that country.
Any committer wishing to contribute outside of their geographic scope MUST adhere to the processes and
procedures of that country’s community. Failure to do so may result in the revocation of committer status.

• Country-based communities may, through consent of their community’s committers, choose to adapt this gov-
ernance model and its processes to better suit their needs.

An initial cohort of committers will be determined by current project contributors. A public list of committers will
be maintained in a separate OCDEP.

A separate committers communication channel for each country-based community will be established. A list of each
country’s committer email addresses will be maintained and email will be used to conduct official actions unless
otherwise specified.

Any individual who is a contributor and who agrees to the responsibilities listed here may request to become a
committer via a country’s agreed upon communication channel. That request will then be shared with the group of
that country’s current committers for approval.

4.8. OCDEP 8: Division Identifier Governance 89

Municipal Scrapers Contributor’s Guide Documentation

• There will be a two month period where existing committers may raise objections to a request, otherwise the
request will be considered approved.

• In the case that an objection is raised, a discussion and vote will be had amongst the country’s existing
committers, with a simple majority necessary for approval.

• A majority of a country’s committers participation is necessary for a quorum on all voting matters.

Committers will be approved on an individual basis. Multiple committers from the same organization are permit-
ted, though should be limited to a reasonably small set of individuals. Organizations should work with the current
committer cohort to ensure that new members are approved in a timely manner and to transition departing members
out of the community if necessary.

Committers are expected to participate in good faith in approval, support, maintenance, and other community related
activities or may have their committer status revoked. A committerwho believes the behavior of another committer
is detrimental to the project should take the following steps:

• Discuss the behavior of concern with the individual privately, expressing why you believe the behavior is detri-
mental.

• If the behavior is still not resolved, bring the behavior to the attention of the country’s group of committers
via the country’s agreed upon communication channel. This group should include the party whose behavior is
in question, and should again describe the behavior and why it is detrimental to the project.

• If this discussion does not resolve the behavior, start a thread with all the country’s committers except the
source of the behavior requesting a vote on revocation.

• Each committer may then vote yes, no, or abstain, with non-response implying abstention. “No” votes should
provide their reasoning for voting as such.

• After all votes are received or, after a reasonable amount of time (a few days) has passed and a quorum is reached,
the votes are then evaluated.

• For the request to revoke commit access to pass it must receive “Yes” votes from two thirds of the country’s
existing committers.

• The original person to propose revocation summarizes the result of the vote in an email to all existing
committers excepting the candidate for removal.

• If the vote to revoke commit access passes access is removed, the candidate for revocation is informed of that
fact, and given the reasons for revocation as documented in the message requesting the vote.

• If the revoked committer continues to publicly advocate for their point of view in the community after having
access revoked, the reasoning for removing commit access as described in the request for a vote will be published
to the community.

• (This process is heavly borrowed from the Open vSwitch revocation policy: http://docs.openvswitch.org/en/
latest/internals/committer-grant-revocation/)

Contribution Process

General contributions

Any contributor may create a pull request for generative IDs, corrections, aliases, etc.

• A pull request from a contributor will be considered accepted when reviewed by and approved by two of the
country’s committers.

• If the contribution is from a current committer in good standing with the country’s community, only one addi-
tional committer review is necessary.

90 Chapter 4. Open Civic Data Enhancement Proposals

http://docs.openvswitch.org/en/latest/internals/committer-grant-revocation/
http://docs.openvswitch.org/en/latest/internals/committer-grant-revocation/

Municipal Scrapers Contributor’s Guide Documentation

• No two members of the same organization may be involved in the acceptance of a pull request.

Commits should be reviewed within 2 weeks of a pull request. Accelerated timeline needs should be communicated
via the country’s communication channels.

Some local division identifiers, such as those for special districts in the US, may be difficult to verify for anyone besides
the pull request submitter. Committers should consider the both the source as well as the scope of the change requested
in determining the level of scrutiny necessary for approving a pull request.

If pull requests are languishing due to committer inaction, a country’s committers may implement a mechanism for
automatically approving a pull request after a certain time.

• Ex: “If, after two months there is neither a formal approval or an ongoing conversation around a request, that
request will be sent to all the country’s committers for a final opportunity to object or approve. If no objection is
made within a reasonable amount of time (a few days), the request will be considered approved.”

• This mechanism may be restricted to specific types of identifiers, or prohibit automatic approval for high-level
types.

• Such a mechanism may be considered adopted if upon proposal it receives a majority vote from the country’s
committers.

• No such mechanism may be added for the top level OCDID hierarchy (ocd-division/country:) or for coun-
tries who would otherwise not have any identifiers.

If a conversation around a request cannot reach consensus, after two months the person who made the pull request may
request a final vote from the country’s committers.

Approval will be handled on a per-file, rather than a per-commit, basis.

New commits should include well-formed explanations, especially if generating new IDs or types.

Formalized guidelines for approval will be created for use by committers. These guidelines will include:

• Syntax check guidelines

• Type check guidelines and a glossary of existing types

• Dupe check guidelines

• Instructions for including and checking for correct sameAs aliasing

• Differentiating standards of review between generative/corrective requests

Government contributions

Should a government entity wish to contribute to the repository, they will initially be asked to work directly with an
existing committer to prepare to integrate their identifier set.

• A second committer is still required for approving government contributions, even if a government contributor
becomes a committer themselves.

• Even so, government contributors should be given wide deference within their geographic area.

• If, because of naming conventions, geographic edge cases, etc. a government contributor requests a deviation
from existing OCDID nomenclature, the community will attempt to reasonably accommodate that request (e.g.
using “police_jury” as a type in lieu of “county_council” for Louisiana’s county legislative body)

Government entities (and the committers they work with) will be expected to reconcile and appropriately alias these
cases with existing OCDIDs in order to ensure maximum compatibility.

4.8. OCDEP 8: Division Identifier Governance 91

Municipal Scrapers Contributor’s Guide Documentation

Identifiers created by government officials that are used in official data will be marked as such in the repository, so that
developers can quickly identify the preferred identifier in case of conflict. Caution should be used, and the original
submitter consulted with if possible, before changing government submitted identifiers.

A section of documentation specifically aimed at government staff will be created, where they can learn more about
the project and how to get involved, as well as how to reach out to the community to get help.

Support

Committerswill be expected to participate in a quarterly review of their country’s new OCDIDs in order to ensure qual-
ity on-going. Committers will be requested to contribute and maintain an ongoing style guide for creating new district
types. Committers will be required to participate in > 60% of their country’s formal votes/actions as announced.

4.8.4 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

4.9 OCDEP 20: Elections

Created
2016-12-28

Author
James Gordon, Forest Gregg, California Civic Data Coalition

Status
Accepted

4.9.1 Overview

Definition of data types to model elections, candidacies for public office and ballot measures.

The proposed data types are:

• Election1

• Contest, a base class for:

– BallotMeasureContest

– CandidateContest

– PartyContest

– RetentionContest

• Candidacy

Supplements the Campaign Finance Filings proposal prepared by Abraham Epton, and lays the foundation for a future
proposal covering election results.

1 Election is conceptually similar to a couple of existing OCD data types: 1) Event which represents a hearing or opportunity for public
testimony, as defined in OCDEP 4: Events; and 2) VoteEvent which represents the event of a legislative vote taking place, as defined in OCDEP 7:
Votes. A future OCDEP might define a base class with properties shared by all event-like data types, including a shared id format (e.g., ocd-event/
{{uuid}}).

92 Chapter 4. Open Civic Data Enhancement Proposals

http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed
http://www.californiacivicdata.org/

Municipal Scrapers Contributor’s Guide Documentation

4.9.2 Definitions

Ballot Measure
A proposition or question with two or more predetermined options put before voters in an election. These include:

• The enactment or repeal of a statute, constitutional amendment or other form of law.

• Approval or rejection of a new tax or additional spending of public funds.

• The recall or retention of a previously elected public office holder.

Candidacy
The condition of a person being a candidate. A single person may have multiple candidacies if:

• The person competed in multiple elections, even for the same office term. This includes a candidate in an
initial or “primary” election who advances to be a candidate in the “general” election.

• The person competed to hold multiple public offices, even in the same election.

• The person was elected to serve a term in a public office and later sought re-election to the same public
office.

Candidate
A person competing to serve a term in a public office.

Contest
A specific decision with a set of predetermined options put before voters in an election. These contests include:

• Selecting candidates to hold public offices.

• Selecting options set forth in a ballot measure.

• Selecting a preferred political party to hold power.

Election
A collection of political contests held within a political geography that are decided in parallel through a process
of compiling official ballots cast by voters and adding up the total votes for each option in each contest.

Election Day
The final or only date when eligible voters may cast their ballots in an election. Typically this is also the same
date when results of the election’s contests are first publicly reported.

Incumbent
The candidate for a public office who also currently holds that public office. Also applies to the political party
that currently holds majority power.

Office Term
The interval in which an elected candidate is expected to retain a public office before being re-elected or replaced.

For a variety of reasons, an office holder may vacate an elected office before serving a full term. This is known
as an “unexpired term”, a situation which could require an additional contest (known as a “Special Election” in
U.S. politics) to fill the empty public office.

Party
A political organization to which public office holders and candidates can be affiliated. In some electoral systems,
such as party-list proportional representation, voters may also directly elect political parties to hold power in lieu
of or in addition to voting for specific candidates endorsed by the political party.

Public Office
A position within a governmental body which is filled through an election contest.

Runoff Contest
A contest conducted to decide a previous contest in which no single option received the required number of votes
to decide the contest.

4.9. OCDEP 20: Elections 93

https://en.wikipedia.org/wiki/Party-list_proportional_representation

Municipal Scrapers Contributor’s Guide Documentation

Ticket
Two or more allied candidates competing together in the same contest where multiple related public offices are at
stake. For example, in U.S. politics, candidates for President and Vice President run together on the same ticket,
with the President at the top of the ticket.

Note that candidates on the same ticket are not necessarily affiliated with the same political party.

Write-in
A vote in a contest wherein the voter explicitly names a preferred option for an election contest, rather than
choosing from among the predetermined options listed on the ballot.

4.9.3 Rationale

Elections are a primary focal point of civic activity in which eligible voters cast ballots to determine the outcome of
political contests, including:

• Who should hold a public office?

• Should a proposed change of law be implemented?

Modeling the potential outcomes of these contests is a service to voters who may cast their ballots in an impending
election. Modeling the contests’ actual outcomes legitimizes the election’s results and enables historical electoral
analysis.

This proposal is submitted in response to on-going discussion around a related OCDEP focused on campaign finance
disclosures. Representing elections and their contests is necessary for modeling these disclosures because they reveal
money raised and spent in support or opposition to specific candidates and ballot measures. However, since notions of
elections and their contests run up against other domains, we’ve separated the definition of these types.

The goal of this proposal is to cover the use cases related to the campaign finance domain while laying the foundation
for models that will include election results (to be covered in a future OCDEP).

Our use cases require unique representations of both previous elections and contests as well as pending elections and
contests. While honoring these requirements, we also aim for consistency with the Voting Information Project’s XML
format specification so as to support a high degree of interoperability with that existing data standard.

VIP 5, the specification’s current version, incorporates elements from the Election Results Common Data Format
Specification defined by the National Institute of Standard and Technology. As such, we have borrowed eagerly from
NIST’s current specification also.

Differences from VIP

The three major differences are:

1. VIP models a single election, whereas this proposal intends to model previous and pending elections. As such,
certain OCD data types are independent of and linked to multiple elections and/or election contests, unlike their
corresponding VIP elements.

2. VIP models precise details about ballots, including the exact wording and order of the options (VIP refers to these
as “selections”) presented to voters in a given jurisdiction. These details are beyond the scope of this proposal.

3. VIP models details about polling locations, including their addresses and hours. These details are also beyond
the scope of this proposal.

Important differences between the proposed OCD data type and its corresponding VIP element, if any, are noted in
each data type’s “Mapping to VIP” subsection in Implementation.

94 Chapter 4. Open Civic Data Enhancement Proposals

http://vip-specification.readthedocs.io/en/vip5/xml/index.html#elements
http://vip-specification.readthedocs.io/en/vip5/xml/index.html#elements
https://www.nist.gov/itl/voting/nist-election-results-common-data-format-specification
https://www.nist.gov/itl/voting/nist-election-results-common-data-format-specification

Municipal Scrapers Contributor’s Guide Documentation

Additionally, VIP describes InternationalizedText and LanguageString elements for the purposes of representing
certain texts in multiple languages, e.g., the English and Spanish translations of the support_statement and
oppose_statement of a BallotMeasureContest. These are treated as strings in this proposal.

4.9.4 Implementation

Election

A collection of political contests set to be decided on the same date within a Division.

id
Open Civic Data-style id, in the format ocd-election/{{uuid}}.

name
Name of the election.

date
Final or only date when eligible voters may cast their ballots in the Election. Typically this is also the same date
when results of the election’s contests are first publicly reported.

identifiers
optional repeated Upstream identifiers of the election, such as those assigned by a Secretary of State, county or
city elections office. Has the following properties:

scheme
The name of the service that created the identifier.

identifier
A unique identifier developed by an upstream or third party source.

division_id
Reference to the OCD Division that defines the broadest political geography of any contest to be decided by
the election. For example, an election that includes a contest to elect the governor of California would include
the division identifier for the entire state of California.

administrative_organization_id
optional Reference to the OCD Organization that administers the election.

created_at
Date and time when the object was created at in the system.

updated_at
Date and time when the object was last updated in the system.

sources
optional repeated List of sources used in assembling this object. Has the following properties:

url
A hyperlink related to an object.

note
optional A short, optional note related to an object.

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

4.9. OCDEP 20: Elections 95

InternationalizedText
LanguageString

Municipal Scrapers Contributor’s Guide Documentation

Sample Election

{
"id": "ocd-election/4c25d655-c380-46a4-93d7-28bc0c389629",
"name": "2016 GENERAL",
"date": "2016-11-08",
"identifiers": [

{
"scheme": "calaccess_election_id",
"identifier": "65"

}
],
"division_id": "ocd-division/country:us/state:ca/",
"administrative_organization_id": "ocd-organization/436b4d67-b5aa-402c-9e20-

→˓0e56a8432c80",
"created_at": "2017-02-07T07:17:58.874Z",
"updated_at": "2017-02-07T07:17:58.874Z",
"sources": [

{
"note": "Last scraped on 2017-02-08",
"url": "http://cal-access.ss.ca.gov/Campaign/Candidates/list.aspx?

→˓view=certified&electNav=65"
},
{

"note": "Last scraped on 2017-02-07",
"url": "http://cal-access.ss.ca.gov/Campaign/Measures/list.aspx?session=2015"

}
],
"extras": {"calaccess_election_type": ["GENERAL"]},

}

Mapping to VIP

Election corresponds to VIP’s Election element.

• Important differences between corresponding fields:

– <Name> is not required on VIP’s <Election> but is required in OCD.

– <StateId>, which is a required reference to a VIP State element, should map to an equivalent OCD
division_id if <IsStatewide> is true. Otherwise, division_id should reference the appropriate
subdivision of the equivalent to <StateId>.

• OCD fields not implemented in VIP:

– administrative_organization_id is an optional reference to an OCD Organization that’s equiva-
lent to the <Department> tag in VIP’s ElectionAdministration element.

• VIP fields not implemented in this OCDEP:

– <ElectionType>, which is optional for describing either the level of government to which a candidate
might be elected (e.g., “federal”, “state”, “county”, etc.) or the point when the election occurs in the overall
cycle (e.g., “general”, “primary”, “runoff” and “special”).

– <HoursOpenId>, which is an optional reference to a VIP HoursOpen element that represents when polling
locations for the election are generally open.

96 Chapter 4. Open Civic Data Enhancement Proposals

Election
State
ElectionAdministration
HoursOpen

Municipal Scrapers Contributor’s Guide Documentation

– <RegistrationInfo>, which optional text.

– <RegistrationDeadline>, which is an optional date.

– <HasElectionDayRegistration>, which is an optional boolean.

– <AbsenteeBallotInfo>, which is optional text.

– <AbsenteeRequestDeadline>, which is an optional date.

– <ResultsUri>, which is optional.

Contest

A base class for representing a specific decision set before voters in an election. Includes properties shared by all
contest types: BallotMeasureContest, CandidateContest, PartyContest and RetentionContest.

id
Open Civic Data-style id in the format ocd-contest/{{uuid}}.

identifiers
optional repeated Upstream identifiers of the contest, such as those assigned by a Secretary of State, county or
city elections office. Has the following properties:

scheme
The name of the service that created the identifier.

identifier
A unique identifier developed by an upstream or third party source.

name
Name of the contest, not necessarily as it appears on the ballot (string).

division_id
Reference to the OCD Division that defines the political geography of the contest, e.g., a specific Congressional
or State Senate district. The Division referenced by each Contest should be a subdivision of the Division
referenced by the contest’s Election.

election_id
Reference to the OCD Election in which the contest is decided.

created_at
Date and time when this object was created at in the system.

updated_at
Date and time when object was last updated in the system.

sources
optional repeated List of sources used in assembling this object. Has the following properties:

url
A hyperlink related to an object.

note
optional A short, optional note related to an object

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

4.9. OCDEP 20: Elections 97

Municipal Scrapers Contributor’s Guide Documentation

Sample Contest

{
"id": "ocd-contest/eff6e5bd-10dc-4930-91a0-06e2298ca15c"
"identifiers": [],
"name": "STATE SENATE 01",
"division_id": "ocd-division/country:us/state:ca/sldu:1",
"election_id": "ocd-event/4c25d655-c380-46a4-93d7-28bc0c389629",
"created_at": "2017-02-07T07:18:05.438Z",
"updated_at": "2017-02-07T07:18:05.442Z",
"sources": [

{
"note": "Last scraped on 2017-02-08",
"url": "http://cal-access.ss.ca.gov/Campaign/Candidates/list.aspx?

→˓view=certified&electNav=65"
}

],
"extras": {}

}

Mapping to VIP

Contest corresponds to VIP’s ContestBase element.

• Important differences between corresponding fields:

– <ElectoralDistrictId>, which is an optional reference to a VIP ElectoralDistrict element, can map to
an equivalent OCD division_id.

• OCD fields not implemented in VIP:

– election_id is a required reference to an OCD Election.

• VIP fields not implemented in this OCDEP:

– <Abbreviation>, which is optional text.

– <BallotSelectionIds> is an optional single element that contains a set of references to each selection
(i.e., any extension of VIP’s BallotSelectionBase) on any ballot that includes the contest. This proposal
instead represents the distinct options for each contest across all versions of the ballot.

– <ElectorateSpecification>, which optional text.

– <HasRotation>, which is an optional boolean.

– <BallotSubTitle>, which is optional text.

– <BallotTitle>, which is optional text.

– <SequenceOrder>, which is an optional integer.

– <VoteVariation>, which is an optional reference to a VIP VoteVariation.

– <OtherVoteVariation>, which is optional text.

98 Chapter 4. Open Civic Data Enhancement Proposals

ContestBase
ElectoralDistrict
BallotSelectionBase
VoteVariation

Municipal Scrapers Contributor’s Guide Documentation

BallotMeasureContest

A contest in which voters select from among options proposed in a ballot measure.

BallotMeasureContest inherits all the required and optional properties of Contest.

options
repeated List of the options voters may choose, e.g., “yes”, “no”, “recall”, “no recall” (two or more required).

description
optional Text describing the purpose and/or potential outcomes of the ballot measure, not necessarily as it appears
on the ballot (string).

requirement
optional The threshold of votes the ballot measure needs in order to pass (string). The default is a simple majority,
i.e., “50% plus one vote”. Other common thresholds are “three-fifths” and “two-thirds”.

classification
optional Describes the origin and/or potential outcome of the ballot measure, e.g., “initiative statute”, “legislative
constitutional amendment” (string).

runoff_for_contest_id
optional If this contest is a runoff to determine the outcome of a previously undecided contest, reference to that
BallotMeasureContest.

Sample BallotMeasureContest

{
"id": "ocd-contest/2ce7e19b-3feb-4318-9908-eb3fdf456fb0",
"identifiers": [

{
"scheme": "calaccess_measure_id",
"identifier": "1376195"

}
],
"name": "PROPOSITION 060- ADULT FILMS. CONDOMS. HEALTH REQUIREMENTS. INITIATIVE␣

→˓STATUTE."
"division_id": "ocd-division/country:us/state:ca",
"election_id": "ocd-event/4c25d655-c380-46a4-93d7-28bc0c389629",
"created_at": "2017-02-07T07:17:59.818Z",
"updated_at": "2017-02-07T07:17:59.818Z",
"sources": [

{
"note": "Last scraped on 2017-02-07",
"url": "http://cal-access.ss.ca.gov/Campaign/Measures/Detail.aspx?id=1376195&

→˓session=2015"
}

],
"extras": {},
"options": [

"yes",
"no"

],
"description": "Requires adult film performers to use condoms during filming of␣

→˓sexual intercourse. Requires producers to pay for performer vaccinations, testing, and␣
(continues on next page)

4.9. OCDEP 20: Elections 99

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

→˓medical examinations. Requires producers to post condom requirement at film sites.␣
→˓Fiscal Impact: Likely reduction of state and local tax revenues of several million␣
→˓dollars annually. Increased state spending that could exceed $1 million annually on␣
→˓regulation, partially offset by new fees",

"requirement": "50% plus one vote",
"classification": "initiative statute",
"runoff_for_contest_id": null

}

Mapping to VIP

BallotMeasureContest corresponds to VIP’s BallotMeasureContest element.

• Important differences between corresponding fields:

– <PassageThreshold> maps to requirement.

– <Type>, which is an optional reference to a VIP BallotMeasureType maps to classification which is
a simple string.

• OCD fields not implemented in VIP:

– options should list the distinct selections across all ballots that include the ballot measure (i.e., the distinct
<Selection> tags in the BallotMeasureSelection element).

• VIP fields not implemented in this OCDEP:

– <ConStatement>, which is optional text.

– <ProStatement>, which is optional text.

– <EffectOfAbstain>, which is optional.

– <FullText>, which is optional text.

– <SummaryText>, which is optional text.

– <InfoUri>, which is optional.

– <OtherType>, which is optional text.

CandidateContest

A contest among candidates seeking election to one or more public offices.

CandidateContest inherits all the required and optional properties of Contest.

posts
repeated List of references to each OCD Post representing a public office for which the candidates in the contest
are seeking election. Requires at least one. Has the following properties:

post_id
Reference to the OCD Post at stake in the CandidateContest.

sort_order
optional Useful for sorting for contests where two or more public offices are at stake, e.g., in a U.S. presi-
dential contest, the President post would have a lower sort order than the Vice President post.

100 Chapter 4. Open Civic Data Enhancement Proposals

BallotMeasureContest
BallotMeasureType
BallotMeasureSelection

Municipal Scrapers Contributor’s Guide Documentation

party_id
optional If the contest is among candidates of the same political party, e.g., a partisan primary election, reference
to the OCD Organization representing that political party.

previous_term_unexpired
Indicates the previous public office holder vacated the post before serving a full term (boolean).

number_elected
Number of candidates that are elected in the contest, i.e. ‘N’ of N-of-M (integer). Default is 1.

runoff_for_contest_id
optional If this contest is a runoff to determine the outcome of a previously undecided contest, reference to that
CandidateContest.

Sample CandidateContest

{
"id": "ocd-contest/eff6e5bd-10dc-4930-91a0-06e2298ca15c",
"identifiers": [],
"name": "STATE SENATE 01",
"division_id": "ocd-division/country:us/state:ca/sldu:1",
"election_id": "ocd-event/4c25d655-c380-46a4-93d7-28bc0c389629",
"created_at": "2017-02-07T07:18:05.438Z",
"updated_at": "2017-02-07T07:18:05.442Z",
"sources": [

{
"note": "Last scraped on 2017-02-08",
"url": "http://cal-access.ss.ca.gov/Campaign/Candidates/list.aspx?

→˓view=certified&electNav=65"
}

],
"extras": {},
"posts": [

{
"post": "ocd-post/f204b117-24af-42fd-a3fc-c5772533fdf5",
"sort_order": 0

}
],
"previous_term_unexpired": false,
"number_elected": 1,
"party_id": null,
"runoff_for_contest_id": null

}

4.9. OCDEP 20: Elections 101

Municipal Scrapers Contributor’s Guide Documentation

Mapping to VIP

CandidateContest corresponds to VIP’s CandidateContest element.

• Important differences between corresponding fields:

– <OfficeIds>, which is an optional set of references to VIP Office elements, correpsonds to posts. Each
<OfficeId> should map to an equivalent OCD Post and the order in which the <OfficeIds> are listed
should be preserved in sort_order.

– <PrimaryPartyIds> is an optional set of references to each Party related to the contest. This proposal
allows for a CandidateContest to be linked to a single equivalent OCD Organization.

– <NumberElected> is an optional integer in VIP but is required in OCD, where it defaults to 1.

• OCD fields not implemented in VIP:

– previous_term_unexpired should be true if the <OfficeTermType> referenced by the <Term> tag in
VIP’s Office element is “unexpired-term”. Otherwise, previous_term_unexpired should be false.

– runoff_for_contest_id is optional.

• VIP fields not implemented in this OCDEP:

– <VotesAllowed>, which is an optional integer.

PartyContest

A contest in which voters can vote directly for a political party.

In these contests, voters can vote for a party in lieu of/in addition to voting for candidates endorsed by that party (as in
the case of party-list proportional representation).

PartyContest inherits all the required and optional properties of Contest.

parties
repeated List of references to each party voters may choose in the contest. Requires at list one. Has the following
properties:

party_id
Reference to an OCD Organization representing a political party voters may choose in the contest.

is_incumbent
optional Indicates whether the party currently holds majority power (boolean).

runoff_for_contest_id
optional If this contest is a runoff to determine the outcome of a previously undecided contest, reference to that
PartyContest.

Sample PartyContest

{
"id": "ocd-contest/eff6e5bd-10dc-4930-91a0-06e2298ca15c",
"identifiers": [],
"name": "Elections for the 20th Knesset",
"division_id": "ocd-division/country:il",
"election_id": "ocd-event/4c25d655-c380-46a4-93d7-28bc0c389629",
"created_at": "2017-02-07T07:18:05.438Z",

(continues on next page)

102 Chapter 4. Open Civic Data Enhancement Proposals

CandidateContest
Office
Party
Office
https://en.wikipedia.org/wiki/Party-list_proportional_representation

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

"updated_at": "2017-02-07T07:18:05.442Z",
"sources": [],
"extras": {},
"parties": [

{
"party_id": "ocd-organization/866e7266-0c21-4476-a7a7-dc11d2ae8cd1",
"is_incumbent": false

},
{

"party_id": "ocd-organization/b58f698e-a956-4bd5-8ca1-3b46c22c96b4",
"is_incumbent": true

},
],
"runoff_for_contest_id": null

}

Mapping to VIP

PartyContest corresponds to VIP’s PartyContest element.

• OCD fields not implemented in VIP:

– parties should list the distinct party selections across all ballots that include the <PartyContest> (i.e.,
each OCD Organization equivalent to each VIP <Party> referenced in the <PartyIds> tag in the
PartySelection element).

– runoff_for_contest_id an optional field.

RetentionContest

A contest where voters vote to retain or recall a current office holder.

These contests include judicial retention or recall elections.

RetentionContest inherits all the required and optional properties of BallotMeasureContest.

membership_id
Reference to the OCD Membership that represents the tenure of a specific person (i.e., OCD Person object) in
a specific public office (i.e., Post object).

Sample RetentionContest

{
"id": "ocd-contest/d0455060-44ee-4fbf-bc7e-7db86084a11e",
"identifiers": [

{
"scheme": "calaccess_measure_id",
"identifier": "1256382"

}
],
"name": "2003 RECALL QUESTION",

(continues on next page)

4.9. OCDEP 20: Elections 103

PartyContest
PartySelection

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

"division_id": "ocd-division/country:us/state:ca",
"election_id": "ocd-event/3f904160-d304-4753-a542-578cfcb86e76",
"created_at": "2017-02-07T07:18:00.555Z",
"updated_at": "2017-02-07T07:18:00.555Z",
"sources": [

{
"note": "Last scraped on 2017-02-07",
"url": "http://cal-access.ss.ca.gov/Campaign/Measures/Detail.aspx?id=1256382&

→˓session=2003"
}

],
"extras": {},
"requirement": "50% plus one vote",
"options": [

"yes",
"no"

],
"description": "SHALL GRAY DAVIS BE RECALLED (REMOVED) FROM THE OFFICE OF GOVERNOR?",
"classification": "recall",
"other_type": "",
"membership_id": "ocd-membership/181a0826-f458-403f-ae65-e1ce97b8dd34"

}

Mapping to VIP

RetentionContest corresponds to VIP’s RetentionContest element.

• Important differences between corresponding fields:

– <CandidateId>, which is a required reference to a VIP Candidate element, and <OfficeId>, which is an
optional reference to a VIP Office element, should map to an equivalent OCD Membership representing a
specific person’s (i.e, an OCD Person object) tenure in a specific public office (i.e., an OCD Post object).

Candidacy

A person seeking election to hold a specific public office for a term.

id
Open Civic Data-style id in the format ocd-candidacy/{{uuid}}.

person_id
Reference to an OCD Person who is the candidate.

post_id
Reference to the OCD Post representing the public office for which the candidate is seeking election.

contest_id
Reference to an OCD CandidateContest representing the contest in which the candidate is competing.

candidate_name
optional For preserving the candidate’s name as it was of the candidacy. (string).

filed_date
optional Specifies when the candidate filed for the contest (date).

104 Chapter 4. Open Civic Data Enhancement Proposals

RetentionContest
Candidate
Office

Municipal Scrapers Contributor’s Guide Documentation

registration_status
optional Enumerated among:

• filed: The candidate filed for office but is not qualified.

• qualified: The candidate qualified for the contest.

• withdrawn: The candidate withdrew from the contest (but may still be on the ballot).

• write-in: While the candidate’s name did not appear on the ballot, he or she nonetheless campaigned for
voter to write in his or her name.

is_incumbent
optional Indicates whether the candidate is seeking re-election to a public office he/she currently holds (boolean).

party_id
optional Reference to an OCD Organzation representing the political party that nominated the candidate or
would nominate the candidate (as in the case of a partisan primary).

top_ticket_candidacy_id
optional If the candidate is running as part of ticket, e.g., a Vice Presidential candidate running with a Presidential
candidate, reference to candidacy at the top of the ticket.

created_at
Date and time when this object was created at in the system.

updated_at
Date and time when this object was last updated in the system (datetime).

sources
optional repeated List of sources used in assembling this object. Has the following properties:

url
A hyperlink related to an object.

note
optional A short, optional note related to an object.

extras
Common to all Open Civic Data types, the value is a key-value store suitable for storing arbitrary information
not covered elsewhere.

Sample Candidacy

{
"id": "ocd-candidacy/054f0a6e-9c06-4611-8c2c-3e143843c9d8",
"person_id": "ocd-person/edfafa56-686d-49ea-80e5-64bc795493f8",
"post": "ocd-post/f204b117-24af-42fd-a3fc-c5772533fdf5",
"contest_id": "ocd-contest/eff6e5bd-10dc-4930-91a0-06e2298ca15c",
"candidate_name": "ROWEN, ROBERT J.",
"filed_date": "2016-03-10",
"is_incumbent": false,
"registration_status": "qualified",
"party_id": "ocd-organization/866e7266-0c21-4476-a7a7-dc11d2ae8cd1",
"top_ticket_candidacy_id": null,
"created_at": "2017-02-08T04:17:30.818Z",
"updated_at": "2017-02-08T04:17:30.818Z",
"sources": [],

(continues on next page)

4.9. OCDEP 20: Elections 105

Municipal Scrapers Contributor’s Guide Documentation

(continued from previous page)

"extras": {}
}

Mapping to VIP

Candidacy corresponds to VIP’s Candidate element.

• Important differences between corresponding fields:

– <PartyId>, which is an optional reference a VIP Party element, can map to an equivalent OCD
Organization.

– person_id , which is an optional reference a VIP Person element, can map to an equivalent OCD Person.

– <IsTopTicket>, which is an optional boolean indicating the candidate is the top of a ticket that includes
multiple candidates, is replaced by an optional top_ticket_candidacy_id.

– <PreElectionStatus>, which is an optional reference to a VIP CandidatePreElectionStatus is replaced
by an optional registration_status.

• OCD fields not implemented in VIP:

– contest_id is a required reference to an OCD CandidateContest which should be the equivalent of the
VIP <CandidateContest> to which the equivalent VIP <Candidate> is linked.

– committee_id is optional.

• VIP fields not implemented in this OCDEP:

– <ContactInformation> refers to an element that describes the contact and physical address information
for the candidate or their campaign. On and OCD Candidacy, this information would be stored on the
associated Person or Committee object.

– <PostElectionStatus>, which is an optional reference to a VIP CandidatePostElectionStatus.

4.9.5 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license.

4.10 OCDEP 101: Standardize Usage of Dates & Times

Created
2017-05-26

Author
James Turk

Status
Accepted

106 Chapter 4. Open Civic Data Enhancement Proposals

Candidate
Party
Person
CandidatePreElectionStatus
CandidatePostElectionStatus
http://creativecommons.org/publicdomain/zero/1.0/deed

Municipal Scrapers Contributor’s Guide Documentation

4.10.1 Overview

There are currently three ways we handle dates & times throughout Open Civic Data. This proposal aims to evaluate
them and make several changes that will increase consistency & serve as guidance for future decisions.

4.10.2 Rationale

The current situation:

“Fuzzy Date Field”
This is implemented as a char field allowing up to 10 characters. Dates are expected to conform to the YYYY[-
MM[-DD]] format.

This comes from Popolo, and allows dates to be specified with varying degrees of accuracy depending on what is
known. (e.g. sometimes we only know a person’s birth year, or the month something came into being)

The field is used in the following places:

• BillAbstract.date

• BillAction.date

• BillDocument.date

• BillVersion.date

• EventDocument.date

• EventMedia.date (via EventMediaBase)

• EventAgendaMedia.date (via EventMediaBase)

• LegislativeSession.{start_date,end_date}

• Membership.{start_date,end_date}

• Organization.{founding_date,dissolution_date}

• OrganizationName.{start_date,end_date} (via OtherNameBase)

• Person.{birth_date,death_date}

• PersonName.{start_date,end_date} (via OtherNameBase)

• Post.{start_date,end_date}

“Fuzzy Datetime Field”
For VoteEvents sometimes the time is important too, so we extended the above field to 19 characters, allowing
an additional inclusion of time in HH:MM:SS.

This field is used only in

• VoteEvent.{start_date,end_date}

Finally, we sometimes use native DateTime fields.

Notably this is used for every model’s created_at/updated_at timestamp.

It is also used for

• Event.{start_time,end_time}

This has the advantage of being timezone-aware.

4.10. OCDEP 101: Standardize Usage of Dates & Times 107

Municipal Scrapers Contributor’s Guide Documentation

Issues with current approach

For the most part this is OK, and we’re fairly consistent. Most uses of fuzzy date align with the goals, but in a few cases
it seems like we’ve made some mistakes:

1) VoteEvent and Event have very similar start/end times but use different and incompatible representations. Vo-
teEvent’s special case of fuzzy time can have a time but lacks a timezone, while Event’s fields are named
start_time/end_time and use a DateTime object, the only place one is used (also requiring more precision than
we’re guaranteed to have).

And two other issues:

2) The extended format is almost ISO8601 datetime, but uses a space instead of a ‘T’ as the separator of date &
time.

3) We need the ability to set times on BillAction.date, just like VoteEvent. We are frequently forced to truncate
times.

4.10.3 Implementation

We’d make the following changes:

1) To address #1 and #2: add timezone to “fuzzy datetime” and bring the full format in line w/ ISO8601, changing
the format from:

YYYY[-MM][-DD][HH:MM:SS]

to

^
[0-9]{4}
(
(-[0-9]{2}){0,2} |
(-[0-9]{2}){2} T [0-9]{2}(:[0-9]{2}){0,2} (Z | [+-] [0-9]{2}(:[0-9]{2})?)

)?
$

Also considered:

• Convert it to a full datetime, but this would require a time on every vote. We might not have one.

• Define that time is always stored in UTC, but this would be more error prone than being explicit.

2) To further address #1, rename Event.start_time,end_time to start_date,end_date to match Event and have it adopt
the fuzzy datetime. This was chosen instead of renaming VoteEvent’s fields to remain consistent w/ Popolo &
other standards. This also makes the separate timezone field on event redundant and confusing, so it would be
removed.

Also considered:

• Leaving this be, but I think we should take this opportunity to fix as many time related issues as we can.

3) To address #3, extend BillAction.date to allow “fuzzy datetimes”.

Also considered:

• It could also become a full datetime (see #1), but would mostly have to fake the time.

• Naming the field ‘time’ was initially recommended, but since we aren’t changing other fields that has been
withdrawn.

108 Chapter 4. Open Civic Data Enhancement Proposals

Municipal Scrapers Contributor’s Guide Documentation

4.10.4 Copyright

This document has been placed in the public domain per the Creative Commons CC0 1.0 Universal license (http:
//creativecommons.org/publicdomain/zero/1.0/deed).

For proposals under consideration see drafts.

4.10. OCDEP 101: Standardize Usage of Dates & Times 109

http://creativecommons.org/publicdomain/zero/1.0/deed
http://creativecommons.org/publicdomain/zero/1.0/deed

	Writing Scrapers
	Getting Started Writing Scrapers
	Python
	Understanding GitHub
	Scraping Basics
	Getting Started

	Creating a New Scraper
	Writing a Person Scraper
	Special notes about People scrapers
	Target Data
	Creating a New Person scraper
	Committees and Memberships
	Scraper Example
	Special notes regarding Posts, Memberships and Districts

	Writing an Events Scraper
	Target Data
	Creating a new Events scraper

	Writing a Bill Scraper
	Target Data
	Overview
	Scraping Votes

	Running the Scraper
	Validating Data

	Submitting a Pull Request
	Fork the repo you want to contribute to
	Submit a pull request
	Best Practice
	Keeping your branch up to date
	Checking what you’ve changed

	Common tips for writing scrapers
	Fetching a page and setting URLs to absolute paths
	Getting the current session
	Common XPath tricks
	Quick text grabs
	Class limiting / ID limiting
	Contains queries
	Array Access
	Axis Overview

	Writing “defensive” scrapers

	Open Civic Data Formats
	Adopting the OCD Specification
	Finding Your Division ID
	Finding or Creating Organizations
	Publishing Your Local Representatives
	And More!

	Data Types
	Jurisdiction Objects
	Basic Details
	Additional Metadata

	Division Objects
	Basic Details
	Additional Fields

	Person Objects
	Basics
	Extended Details
	Alternate Names/Identifiers
	Common Fields

	Organization Objects
	Basics
	Posts
	Extended Details
	Alternate Names/Identifiers
	Common Fields

	Bill Objects
	Basics
	Common Fields
	Other/Related Bills
	Sponsors and Actions
	Documents and Versions

	Vote Objects
	Basic Fields
	Common Fields
	Relationship to Bill
	Vote Counts

	Event Objects
	Basics
	Linked Entities
	Common Fields

	OCD Identifiers
	Creating a new OCD ID
	General Format
	Division IDs
	Jurisdiction IDs
	Person IDs, Org IDs

	Style Guidelines
	General
	Version Control
	Line Length

	Open Civic Data Workflow
	Submitting Changes
	Suggested Git Branching Model

	Python Code Guidelines
	Python Version
	Code Standards
	Comments
	Trailing Spaces

	Open Civic Data Enhancement Proposals
	OCDEP 1: Purpose and Guidelines
	What is an OCDEP?
	Rationale
	When to write a proposal
	Submitting a Proposal
	Discussion and Acceptance of a Proposal
	Implementation of a Proposal
	Copyright

	OCDEP 2: Division Identifiers
	Overview
	Definitions

	Rationale
	Implementation
	Identifier Scheme
	Assignment
	Repository layout
	Identifiers
	Corrections
	Semantics
	Governance
	Examples

	Copyright

	OCDEP 3: Jurisdictions
	Overview
	Rationale
	Implementation
	Copyright

	OCDEP 4: Events
	Overview
	Definitions

	Rationale
	Implementation
	Core Fields
	Optional Fields
	Location
	Participants
	Agenda Items
	Required Fields
	Optional Fields
	Related Entities

	Documents
	Links
	Media
	Required Fields
	Optional Fields
	Defined Types

	Examples

	Defined Schema
	Further Reading
	Copyright

	OCDEP 5: People, Organizations, Posts, and Memberships
	Overview
	Definitions

	Rationale
	Implementation
	Person
	Omitted Fields
	Additional Fields

	Organization
	Omitted Fields
	Additional Fields

	Post
	Omitted Fields
	Additional Fields

	Membership
	Omitted Fields
	Additional Fields

	Areas, Divisions, and Jurisdictions

	Copyright

	OCDEP 6: Bills
	Overview
	Rationale
	Implementation
	Further Reading
	Copyright

	OCDEP 7: Votes
	Overview
	Rationale
	Implementation
	VoteEvent
	Voting Options
	Differences from Popolo

	Copyright

	OCDEP 8: Division Identifier Governance
	Overview
	Rationale
	Implementation
	Roles & Responsibilities
	User
	Contributor
	Committer

	Contribution Process
	General contributions
	Government contributions

	Support

	Copyright

	OCDEP 20: Elections
	Overview
	Definitions
	Rationale
	Differences from VIP

	Implementation
	Election
	Sample Election
	Mapping to VIP

	Contest
	Sample Contest
	Mapping to VIP

	BallotMeasureContest
	Sample BallotMeasureContest
	Mapping to VIP

	CandidateContest
	Sample CandidateContest
	Mapping to VIP

	PartyContest
	Sample PartyContest
	Mapping to VIP

	RetentionContest
	Sample RetentionContest
	Mapping to VIP

	Candidacy
	Sample Candidacy
	Mapping to VIP

	Copyright

	OCDEP 101: Standardize Usage of Dates & Times
	Overview
	Rationale
	Issues with current approach

	Implementation
	Copyright

